Allott L, Aboagye EO. Chemistry considerations for the clinical translation of oncology PET radiopharmaceuticals. Mol Pharm. 2020;17:2245–59.
PubMed
CAS
Google Scholar
Allott L, Da Pieve C, Turton DR, Smith G. A general [18 F]AlF radiochemistry procedure on two automated synthesis platforms. React Chem Eng. 2017;2:68–74.
CAS
Google Scholar
Allott L, Barnes C, Brickute D, Aboagye EO. An improved automated radiosynthesis of [18F]FET-βAG-TOCA. React Chem Eng. 2019;4:569–74.
CAS
Google Scholar
Allott L, Dubash S, Aboagye EO. [18F]FET-βAG-TOCA: the design, evaluation and clinical translation of a fluorinated octreotide. Cancers (Basel). 2020;12:E865.
Google Scholar
Ananias HJK, Yu Z, Hoving HD, et al. Application of 99mTechnetium-HYNIC(tricine/TPPTS)-Aca-Bombesin(7–14) SPECT/CT in prostate cancer patients: a first-in-man study. Nucl Med Biol. 2013;40:933–8.
PubMed
CAS
Google Scholar
Bandyopadhyay A, Raghavan S. Defining the role of integrin alphavbeta6 in cancer. Curr Drug Targets. 2009;10:645–52.
PubMed
PubMed Central
CAS
Google Scholar
Behr SC, Aggarwal R, VanBrocklin HF, et al. Phase I study of CTT1057, an (18)F-Labeled imaging agent with Phosphoramidate Core targeting prostate-specific membrane antigen in prostate cancer. J Nucl Med. 2019;60:910–6.
PubMed
PubMed Central
CAS
Google Scholar
Boschi S, Lee JT, Beykan S, et al. Synthesis and preclinical evaluation of an Al18F radiofluorinated GLU-UREA-LYS(AHX)-HBED-CC PSMA ligand. Eur J Nucl Med Mol Imaging. 2016;43:2122–30.
PubMed
PubMed Central
CAS
Google Scholar
Bouvet V, Wuest M, Jans HS, Janzen N, Genady AR, Valliant JF, Benard F, Wuest F. Automated synthesis of [18F]DCFPyL via direct radiofluorination and validation in preclinical prostate cancer models. EJNMMI Res. 2016. https://doi.org/10.1186/s13550-016-0195-6.
Article
PubMed
PubMed Central
Google Scholar
Brennen WN, Isaacs JT, Denmeade SR. Rationale behind targeting fibroblast activation protein-expressing carcinoma-associated fibroblasts as a novel chemotherapeutic strategy. Mol Cancer Ther. 2012;11:257–66.
PubMed
PubMed Central
CAS
Google Scholar
Bruce Martin R. Ternary hydroxide complexes in neutral solutions of Al3+ and F−. Biochem Biophys Res Commun. 1988;155:1194–200.
Google Scholar
Carlucci G, Kuipers A, Ananias HJK, de Paula FD, Dierckx RAJO, Helfrich W, Rink R, Moll GN, de Jong IJ, Elsinga PH. GRPR-selective PET imaging of prostate cancer using [18F]-lanthionine-bombesin analogs. Peptides. 2015;67:45–54.
PubMed
CAS
Google Scholar
Chatalic KLS, Franssen GM, van Weerden WM, et al. Preclinical comparison of Al18F- and 68Ga-labeled gastrin-releasing peptide receptor antagonists for PET imaging of prostate cancer. J Nucl Med. 2014;55:2050–6.
PubMed
CAS
Google Scholar
Cheng W, Wu Z, Liang S, Fu H, Wu S, Tang Y, Ye Z, Wang H. Comparison of 18F-AIF-NOTA-PRGD2 and 18F-FDG uptake in lymph node metastasis of differentiated thyroid cancer. PLoS ONE. 2014;9:e100521.
PubMed
PubMed Central
Google Scholar
Cleeren F, Lecina J, Ahamed M, et al. Al18F-labeling of heat-sensitive biomolecules for positron emission tomography imaging. Theranostics. 2017;7:2924–39.
PubMed
PubMed Central
CAS
Google Scholar
Cleeren F, Lecina J, Billaud EMF, Ahamed M, Verbruggen A, Bormans GM. New chelators for low temperature Al18F-Labeling of biomolecules. Bioconjugate Chem. 2016;27:790–8.
CAS
Google Scholar
Cole EL, Stewart MN, Littich R, Hoareau R, Scott PJH. Radiosyntheses using fluorine-18: the art and science of late stage fluorination. Curr Top Med Chem. 2014;14:875–900.
PubMed
PubMed Central
CAS
Google Scholar
Cousin S, Italiano A. Molecular pathways: immune checkpoint antibodies and their toxicities. Clin Cancer Res. 2016;22:4550–5.
PubMed
CAS
Google Scholar
D’Souza CA, McBride WJ, Sharkey RM, Todaro LJ, Goldenberg DM. High-yielding aqueous 18F-labeling of peptides via Al 18F chelation. Bioconjugate Chem. 2011;22:1793–803.
Google Scholar
Da Pieve C, Allott L, Martins CD, Vardon A, Ciobota DM, Kramer-Marek G, Smith G. Efficient [18F]AlF radiolabeling of ZHER3:8698Affibody molecule for imaging of HER3 positive tumors. Bioconjugate Chem. 2016;27:1839–49.
Google Scholar
Da Pieve C, Makarem A, Turnock S, Maczynska J, Smith G, Kramer-Marek G. Thiol-reactive PODS-bearing bifunctional chelators for the development of EGFR-targeting [(18)F]AlF-affibody conjugates. Molecules. 2020. https://doi.org/10.3390/molecules25071562.
Article
PubMed
PubMed Central
Google Scholar
De Vincentis G, Remediani S, Varvarigou AD, Di Santo G, Iori F, Laurenti C, Scopinaro F. Role of 99mTc-Bombesin scan in diagnosis and staging of prostate cancer. Cancer Biother Radiopharm. 2004;19:81–4.
PubMed
Google Scholar
De Vincentis G, Scopinaro F, Varvarigou A, Ussof W, Schillaci O, Archimandritis S, Corleto V, Longo F, Fave GD. Phase I trial of technetium [Leu13] bombesin as cancer seeking agent: possible scintigraphic guide for surgery? Tumori J. 2002;88:S28–30.
Google Scholar
Di Gialleonardo V, Signore A, Glaudemans AWJM, Dierckx RAJO, De Vries EFJ. N-(4-18F-fluorobenzoyl)interleukin-2 for PET of human-activated T lymphocytes. J Nucl Med. 2012;53:679–86.
PubMed
Google Scholar
Dijkgraaf I, Franssen GM, McBride WJ, D’Souza CA, Laverman P, Smith CJ, Goldenberg DM, Oyen WJG, Boerman OC. PET of tumors expressing gastrin-releasing peptide receptor with an 18F-labeled bombesin analog. J Nucl Med. 2012;53:947 LP-952 LP.
Google Scholar
Dijkgraaf I, Terry SYA, McBride WJ, Goldenberg DM, Laverman P, Franssen GM, Oyen WJG, Boerman OC. Imaging integrin alpha-v-beta-3 expression in tumors with an 18F-labeled dimeric RGD peptide. Contrast Media Mol Imaging. 2013;8:238–45.
PubMed
CAS
Google Scholar
Dong Y, Wei Y, Chen G, Huang Y, Song P, Liu S, Zheng J, Cheng M, Yuan S. Relationship between clinicopathological characteristics and PET/CT uptake in esophageal squamous cell carcinoma: [(18)F]alfatide versus [(18)F]FDG. Mol Imaging Biol. 2019;21:175–82.
PubMed
CAS
Google Scholar
dos Santos G, Rodriguez Taroco M, Giglio J, Savio E, Alonso O. Al18F-PSMA-HBED-CC as a novel tracer for the evaluation of prostate cancer patients with biochemical relapse: Intraindividual comparison with 68Ga-PSMA-HBED-CC. J Nucl Med. 2020;61:1268 LP.
Google Scholar
Du X, Zhang Y, Chen L, Mi B, You Q, Xu Y, Pan D, Wan W, Yang M, Yu C. Comparing the differential diagnostic values of (18)F-Alfatide II PET/CT between tuberculosis and lung cancer patients. Contrast Media Mol Imaging. 2018;2018:8194678.
PubMed
PubMed Central
Google Scholar
Dubash SR, Keat N, Mapelli P, et al. Clinical translation of a click-labeled 18F-octreotate radioligand for imaging neuroendocrine tumors. J Nucl Med. 2016;57:1207–13.
PubMed
CAS
Google Scholar
Eisenwiener K-P, Prata MIM, Buschmann I, Zhang H-W, Santos AC, Wenger S, Reubi JC, Mäcke HR. NODAGATOC, a new chelator-coupled somatostatin analogue labeled with [67/68Ga] and [111In] for SPECT, PET, and targeted therapeutic applications of somatostatin receptor (hsst2) expressing tumors. Bioconjugate Chem. 2002;13:530–41.
CAS
Google Scholar
Farkas E, Fodor T, Kálmán FK, Tircsó G, Tóth I. Equilibrium and dissociation kinetics of the [Al(NOTA)] complex (NOTA = 1,4,7-triazacyclononane-1,4,7-triacetate). React Kinet Mech Catal. 2015;116:19–33.
CAS
Google Scholar
Fersing C, Bouhlel A, Cantelli C, Garrigue P, Lisowski V, Guillet B. A comprehensive review of non-covalent radiofluorination approaches using aluminum [18F]fluoride: will [18F]AlF replace 68Ga for metal chelate labeling? Molecules. 2019. https://doi.org/10.3390/molecules24162866.
Article
PubMed
PubMed Central
Google Scholar
Gao S, Wu H, Li W, Zhao S, Teng X, Lu H, Hu X, Wang S, Yu J, Yuan S. A pilot study imaging integrin αvβ3 with RGD PET/CT in suspected lung cancer patients. Eur J Nucl Med Mol Imaging. 2015;42:2029–37.
PubMed
CAS
Google Scholar
Giesel FL, Adeberg S, Syed M, et al. FAPI-74 PET/CT using either 18F-AlF or cold-kit 68Ga labeling: biodistribution, radiation dosimetry, and tumor delineation in lung cancer patients. J Nucl Med. 2021;62:201–7.
PubMed
PubMed Central
CAS
Google Scholar
Giesel FL, Kratochwil C, Lindner T, et al. 68 Ga-FAPI PET/CT: biodistribution and preliminary dosimetry estimate of 2 DOTA-containing FAP-targeting agents in patients with various cancers. J Nucl Med. 2019;60:386–92.
PubMed
PubMed Central
CAS
Google Scholar
Giglio J, Zeni M, Savio E, Engler H. Synthesis of an Al18F radiofluorinated GLU-UREA-LYS(AHX)-HBED-CC PSMA ligand in an automated synthesis platform. EJNMMI Radiopharm Chem. 2018;3:4.
PubMed
PubMed Central
Google Scholar
Glaser M, Iveson P, Hoppmann S, Indrevoll B, Wilson A, Arukwe J, Danikas A, Bhalla R, Hiscock D. Three methods for 18F labeling of the HER2-binding affibody molecule Z(HER2:2891) including preclinical assessment. J Nucl Med. 2013;54:1981–8.
PubMed
CAS
Google Scholar
Goggi JL, Hartimath SV, Hwang Y, et al. Examining immunotherapy response using multiple radiotracers. Mol Imaging Biol. 2020b;22:993–1002.
CAS
PubMed
Google Scholar
Goggi JL, Tan YX, Hartimath SV, et al. Granzyme B PET imaging of immune checkpoint inhibitor combinations in colon cancer phenotypes. Mol Imaging Biol. 2020a;22:1392–402.
PubMed
PubMed Central
CAS
Google Scholar
González Trotter DE, Meng X, McQuade P, et al. In vivo imaging of the programmed death ligand 1 by18F PET. J Nucl Med. 2017;58:1852–7.
PubMed
Google Scholar
Guo J, Lang L, Hu S, et al. Comparison of three dimeric 18F-AlF-NOTA-RGD tracers. Mol Imaging Biol. 2014;16:274–83.
PubMed
Google Scholar
Hamidi H, Ivaska J. Every step of the way: integrins in cancer progression and metastasis. Nat Rev Cancer. 2018;18:533–48.
PubMed
PubMed Central
CAS
Google Scholar
Hassan H, Razak HRA, Saad FFA, Kumar V. (18)F[AlF]-radiolabelled peptides on the automated synthesis platform: translating the laboratory bench work to bedside. Malays J Med Sci. 2019;26:122–6.
PubMed
PubMed Central
Google Scholar
Hausner SH, Bauer N, Sutcliffe JL. In vitro and in vivo evaluation of the effects of aluminum [18F]fluoride radiolabeling on an integrin αvβ6-specific peptide. Nucl Med Biol. 2014;41:43–50.
PubMed
CAS
Google Scholar
He P, Burke BP, Clemente GS, Brown N, Pamme N, Archibald SJ. Monolith-based 68Ga processing: a new strategy for purification to facilitate direct radiolabelling methods. React Chem Eng. 2016;1:361–5.
CAS
Google Scholar
He P, Burke B, Clemente G, Pamme N, Archibald S. Monolith-based microfluidic device for 68Ga processing and direct radiolabelling. J Nucl Med. 2017;58:674 LP.
Google Scholar
He P, Haswell SJ, Pamme N, Archibald SJ. Advances in processes for PET radiotracer synthesis: separation of [18F]fluoride from enriched [18O]water. Appl Radiat Isot. 2014;91:64–70.
PubMed
CAS
Google Scholar
Herrmann K, Lapa C, Wester H-J, et al. Biodistribution and radiation dosimetry for the chemokine receptor CXCR4-targeting probe 68Ga-pentixafor. J Nucl Med. 2015;56:410–6.
PubMed
CAS
Google Scholar
Heskamp S, Laverman P, Rosik D, Boschetti F, van der Graaf WTA, Oyen WJG, van Laarhoven HWM, Tolmachev V, Boerman OC. Imaging of human epidermal growth factor receptor type 2 expression with 18F-labeled affibody molecule ZHER2:2395 in a mouse model for ovarian cancer. J Nucl Med. 2012;53:146 LP-153 LP.
Google Scholar
Holland JP. Predicting the thermodynamic stability of zirconium radiotracers. Inorg Chem. 2020;59:2070–82.
PubMed
CAS
Google Scholar
Hou J, Long T, Hu S. Head-to-head comparison of the 18F-AlF-NOTA-Octreotide and 68Ga-DOTATATE PET/CT within patients with neuroendocrine neoplasms. J Nucl Med. 2020;61:59 LP.
Google Scholar
Ilhan H, Lindner S, Todica A, et al. Biodistribution and first clinical results of 18F-SiFAlin-TATE PET: a novel 18F-labeled somatostatin analog for imaging of neuroendocrine tumors. Eur J Nucl Med Mol Imaging. 2020;47:870–80.
PubMed
CAS
Google Scholar
Jansen K, Heirbaut L, Cheng JD, et al. Selective inhibitors of fibroblast activation protein (FAP) with a (4-quinolinoyl)-glycyl-2-cyanopyrrolidine scaffold. ACS Med Chem Lett. 2013;4:491–6.
PubMed
PubMed Central
CAS
Google Scholar
Jensen RT, Battey JF, Spindel ER, Benya RV. International Union of Pharmacology. LXVIII. Mammalian bombesin receptors: nomenclature, distribution, pharmacology, signaling, and functions in normal and disease states. Pharmacol Rev. 2008;60:1 LP-42 LP.
Google Scholar
Jiang X, Wang X, Shen T, et al. FAPI-04 PET/CT using [18F]alf labeling strategy: automatic synthesis, quality control, and in vivo assessment in patient. Front Oncol. 2021;11:357.
Google Scholar
Kee CW, Tack O, Guibbal F, et al. 18F-trifluoromethanesulfinate enables direct C-H 18F-trifluoromethylation of native aromatic residues in peptides. J Am Chem Soc. 2020;142:1180–5.
PubMed
PubMed Central
CAS
Google Scholar
Kersemans K, De Man K, Courtyn J, Van Royen T, Piron S, Moerman L, Brans B, De Vos F. Automated radiosynthesis of Al[18F]PSMA-11 for large scale routine use. Appl Radiat Isot. 2018;135:19–27.
PubMed
CAS
Google Scholar
Khoja L, Day D, Wei-Wu Chen T, Siu LL, Hansen AR. Tumour- and class-specific patterns of immune-related adverse events of immune checkpoint inhibitors: a systematic review. Ann Oncol. 2017;28:2377–85.
PubMed
CAS
Google Scholar
Kratochwil C, Flechsig P, Lindner T, et al. 68Ga-FAPI PET/CT: tracer uptake in 28 different kinds of cancer. J Nucl Med. 2019;60:801–5.
PubMed
PubMed Central
CAS
Google Scholar
Krishnan HS, Ma L, Vasdev N, Liang SH. (18) F-Labeling of sensitive biomolecules for positron emission tomography. Chemistry. 2017;23:15553–77.
PubMed
PubMed Central
CAS
Google Scholar
Lang L, Li W, Guo N, Ma Y, Zhu L, Kiesewetter DO, Shen B, Niu G, Chen X. Comparison study of [18F]FAl-NOTA-PRGD2, [18F]FPPRGD2, and [68Ga]Ga-NOTA-PRGD2 for PET imaging of U87MG tumors in mice. Bioconjugate Chem. 2011;22:2415–22.
CAS
Google Scholar
Lapa C, Lückerath K, Rudelius M, et al. [68Ga]Pentixafor-PET/CT for imaging of chemokine receptor 4 expression in small cell lung cancer–initial experience. Oncotarget. 2016;7:9288–95.
PubMed
PubMed Central
Google Scholar
Larimer BM, Wehrenberg-Klee E, Dubois F, Mehta A, Kalomeris T, Flaherty K, Boland G, Mahmood U. Granzyme B PET imaging as a predictive biomarker of immunotherapy response. Cancer Res. 2017;77:2318–27.
PubMed
PubMed Central
CAS
Google Scholar
Laverman P, D’Souza CA, Eek A, McBride WJ, Sharkey RM, Oyen WJG, Goldenberg DM, Boerman OC. Optimized labeling of NOTA-conjugated octreotide with F-18. Tumor Biol. 2012;33:427–34.
CAS
Google Scholar
Laverman P, McBride WJ, Sharkey RM, Eek A, Joosten L, Oyen WJG, Goldenberg DM, Boerman OC. A novel facile method of labeling octreotide with 18F-fluorine. J Nucl Med. 2010;51:454–61.
PubMed
CAS
Google Scholar
Lepage ML, Kuo H-T, Roxin Á, et al. Toward 18F-labeled theranostics: a single agent that can be labeled with 18F, 64Cu, or 177Lu. ChemBioChem. 2020;21:943–7.
PubMed
CAS
Google Scholar
Li L, Ma L, Shang D, et al. Pretreatment PET/CT imaging of angiogenesis based on (18)F-RGD tracer uptake may predict antiangiogenic response. Eur J Nucl Med Mol Imaging. 2019;46:940–7.
PubMed
Google Scholar
Liu S, Liu H, Jiang H, Xu Y, Zhang H, Cheng Z. One-step radiosynthesis of 18F-AlF-NOTA-RGD2 for tumor angiogenesis PET imaging. Eur J Nucl Med Mol Imaging. 2011;38:1732–41.
PubMed
PubMed Central
CAS
Google Scholar
Liu T, Liu C, Xu X, et al. Preclinical evaluation and pilot clinical study of Al(18)F-PSMA-BCH for prostate cancer PET imaging. J Nucl Med. 2019;60:1284–92.
PubMed
CAS
Google Scholar
Liu Y, Hu X, Liu H, Bu L, Ma X, Cheng K, Li J, Tian M, Zhang H, Cheng Z. A comparative study of radiolabeled bombesin analogs for the PET imaging of prostate cancer. J Nucl Med. 2013;54:2132 LP-2138 LP.
Google Scholar
Long T, Yang N, Zhou M, Chen D, Li Y, Li J, Tang Y, Liu Z, Li Z, Hu S. Clinical application of 18F-AlF-NOTA-octreotide PET/CT in combination with 18F-FDG PET/CT for imaging neuroendocrine neoplasms. Clin Nucl Med. 2019;44:452–8.
PubMed
Google Scholar
Luan X, Huang Y, Gao S, Sun X, Wang S, Ma L, Teng X, Lu H, Yu J, Yuan S. (18)F-Alfatide PET/CT may predict short-term outcome of concurrent chemoradiotherapy in patients with advanced non-small cell lung cancer. Eur J Nucl Med Mol Imaging. 2016;43:2336–42.
PubMed
PubMed Central
CAS
Google Scholar
Lütje S, Franssen GM, Herrmann K, Boerman OC, Rijpkema M, Gotthardt M, Heskamp S. In vitro and in vivo characterization of an 18F-ALF-labeled PSMA ligand for imaging of PSMA-expressing xenografts. J Nucl Med. 2019;60:1017–22.
PubMed
Google Scholar
Malik N, Baur B, Winter G, Reske SN, Beer AJ, Solbach C. Radiofluorination of PSMA-HBED via Al18F2+ chelation and biological evaluations in vitro. Mol Imaging Biol. 2015;17:777–85.
PubMed
CAS
Google Scholar
Malik N, Zlatopolskiy B, Machulla H-J, Reske SN, Solbach C. One pot radiofluorination of a new potential PSMA ligand [Al18F]NOTA-DUPA-Pep. J Label Compd Radiopharm. 2012;55:320–5.
CAS
Google Scholar
Marrone KA, Ying W, Naidoo J. Immune-related adverse events from immune checkpoint inhibitors. Clin Pharmacol Ther. 2016;100:242–51.
PubMed
CAS
Google Scholar
Maschauer S, Heilmann M, Wängler C, Schirrmacher R, Prante O. Radiosynthesis and preclinical evaluation of 18F-fluoroglycosylated octreotate for somatostatin receptor imaging. Bioconjugate Chem. 2016. https://doi.org/10.1021/acs.bioconjchem.6b00472.
Article
Google Scholar
McBride WJ, Sharkey RM, Goldenberg DM. Radiofluorination using aluminum-fluoride (Al18F). EJNMMI Res. 2013;3:36.
PubMed
PubMed Central
Google Scholar
McBride WJ, Sharkey RM, Karacay H, D’Souza CA, Rossi EA, Laverman P, Chang CH, Boerman OC, Goldenberg DM. A novel method of 18F radiolabeling for PET. J Nucl Med. 2009;50:991–8.
PubMed
CAS
Google Scholar
Mi B, Yu C, Pan D, Yang M, Wan W, Niu G, Chen X. Pilot prospective evaluation of (18)F-Alfatide II for detection of skeletal metastases. Theranostics. 2015;5:1115–21.
PubMed
PubMed Central
CAS
Google Scholar
Mueller D, Fuchs A, Leshch Y, Proehl M. The shortage of approved 68Ge/68Ga generators—incoming material inspection and GMP compliant use of non-approved generators. J Nucl Med. 2019;60:1059 LP.
Google Scholar
Naka S, Watabe T, Kurimoto K, et al. Automated [18F]PSMA-1007 production by a single use cassette-type synthesizer for clinical examination. EJNMMI Radiopharm Chem. 2020;5:18.
PubMed
PubMed Central
Google Scholar
Narayanam MK, Toutov AA, Murphy JM. Rapid one-step 18F-labeling of peptides via heteroaromatic silicon-fluoride acceptors. Org Lett. 2020;22:804–8.
PubMed
CAS
Google Scholar
Pan D, Yan Y, Yang R, Xu YP, Chen F, Wang L, Luo S, Yang M. PET imaging of prostate tumors with 18F-Al-NOTA-MATBBN. Contrast Media Mol Imaging. 2014;9:342–8.
PubMed
CAS
Google Scholar
Pauwels E, Cleeren F, Tshibangu T, et al. Al18F-NOTA-octreotide: first comparison with 68Ga-DOTATATE in a neuroendocrine tumour patient. Eur J Nucl Med Mol Imaging. 2019;46:2398–9.
PubMed
Google Scholar
Pauwels E, Cleeren F, Tshibangu T, et al. [(18)F]AlF-NOTA-octreotide PET imaging: biodistribution, dosimetry and first comparison with [(68)Ga]Ga-DOTATATE in neuroendocrine tumour patients. Eur J Nucl Med Mol Imaging. 2020;47:3033–46.
PubMed
CAS
Google Scholar
Pernas S, Tolaney SM. HER2-positive breast cancer: new therapeutic frontiers and overcoming resistance. Ther Adv Med Oncol. 2019;11:1758835919833519–1758835919833519.
PubMed
PubMed Central
CAS
Google Scholar
Philipp-Abbrederis K, Herrmann K, Knop S, et al. In vivo molecular imaging of chemokine receptor CXCR4 expression in patients with advanced multiple myeloma. EMBO Mol Med. 2015;7:477–87.
PubMed
PubMed Central
CAS
Google Scholar
Piron S, De Man K, Schelfhout V, Van Laeken N, Kersemans K, Achten E, De Vos F, Ost P. Optimization of PET protocol and interrater reliability of 18F-PSMA-11 imaging of prostate cancer. EJNMMI Res. 2020b;10:14.
PubMed
PubMed Central
CAS
Google Scholar
Piron S, De Man K, Van Laeken N, et al. Radiation dosimetry and biodistribution of 18F-PSMA-11 for PET imaging of prostate cancer. J Nucl Med. 2019;60:1736 LP-1742 LP.
Google Scholar
Piron S, Verhoeven J, Descamps B, Kersemans K, De Man K, Van Laeken N, Pieters L, Vral A, Vanhove C, De Vos F. Intra-individual dynamic comparison of 18F-PSMA-11 and 68Ga-PSMA-11 in LNCaP xenograft bearing mice. Sci Rep. 2020a;10:21068.
PubMed
PubMed Central
CAS
Google Scholar
Ponte JF, Sun X, Yoder NC, et al. Understanding how the stability of the thiol-maleimide linkage impacts the pharmacokinetics of lysine-linked antibody–maytansinoid conjugates. Bioconjugate Chem. 2016;27:1588–98.
CAS
Google Scholar
Poschenrieder A, Osl T, Schottelius M, Hoffmann F, Wirtz M, Schwaiger M, Wester H-J. First (18)F-labeled pentixafor-based imaging agent for PET imaging of CXCR4 expression in vivo. Tomography (Ann Arbor, Mich). 2016;2:85–93.
Google Scholar
Postow MA, Chesney J, Pavlick AC, et al. Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. N Engl J Med. 2015;372:2006–17.
PubMed
PubMed Central
Google Scholar
Rahbar K, Ahmadzadehfar H, Kratochwil C, et al. German multicenter study investigating 177Lu-PSMA-617 radioligand therapy in advanced prostate cancer patients. J Nucl Med. 2017;58:85–90.
PubMed
CAS
Google Scholar
Rodnick ME, Sollert C, Stark D, et al. Cyclotron-based production of 68Ga, [68Ga]GaCl3, and [68Ga]Ga-PSMA-11 from a liquid target. EJNMMI Radiopharm Chem. 2020;5:25.
PubMed
PubMed Central
Google Scholar
Royal RE, Levy C, Turner K, et al. Phase 2 trial of single agent Ipilimumab (anti-CTLA-4) for locally advanced or metastatic pancreatic adenocarcinoma. J Immunother. 2010;33:828–33.
PubMed
PubMed Central
CAS
Google Scholar
Russelli L, Martinelli J, De Rose F, Reder S, Herz M, Schwaiger M, Weber W, Tei L, D’Alessandria C. Room temperature Al18F labeling of 2-aminomethylpiperidine-based chelators for PET imaging. ChemMedChem. 2020;15:284–92.
PubMed
CAS
Google Scholar
Rylova SN, Stoykow C, Del Pozzo L, Abiraj K, Tamma ML, Kiefer Y, Fani M, Maecke HR. The somatostatin receptor 2 antagonist 64Cu-NODAGA-JR11 outperforms 64Cu-DOTA-TATE in a mouse xenograft model. PLoS ONE. 2018;13:e0195802.
PubMed
PubMed Central
Google Scholar
Sandström M, Lindskog K, Velikyan I, et al. Biodistribution and radiation dosimetry of the anti-HER2 affibody molecule 68Ga-ABY-025 in breast cancer patients. J Nucl Med. 2016;57:867–71.
PubMed
Google Scholar
Sathekge M, Bruchertseifer F, Knoesen O, et al. (225)Ac-PSMA-617 in chemotherapy-naive patients with advanced prostate cancer: a pilot study. Eur J Nucl Med Mol Imaging. 2019;46:129–38.
PubMed
CAS
Google Scholar
Scopinaro F, De Vincentis G, Varvarigou AD, Laurenti C, Iori F, Remediani S, Chiarini S, Stella S. 99mTc-bombesin detects prostate cancer and invasion of pelvic lymph nodes. Eur J Nucl Med Mol Imaging. 2003;30:1378–82.
PubMed
Google Scholar
Shetty D, Choi SY, Jeong JM, Lee JY, Hoigebazar L, Lee YS, Lee DS, Chung JK, Lee MC, Chung YK. Stable aluminium fluoride chelates with triazacyclononane derivatives proved by X-ray crystallography and 18F-labeling study. Chem Commun. 2011;47:9732–4.
CAS
Google Scholar
Šimeček J, Hermann P, Wester H-J, Notni J. How is 68Ga labeling of macrocyclic chelators influenced by metal ion contaminants in 68Ge/68Ga generator eluates? ChemMedChem. 2013;8:95–103.
PubMed
Google Scholar
Smith GE, Sladen HL, Biagini SCG, Blower PJ. Inorganic approaches for radiolabelling biomolecules with fluorine-18 for imaging with Positron Emission Tomography. Dalt Trans. 2011;40:6196–205.
CAS
Google Scholar
Sörensen J, Velikyan I, Sandberg D, et al. Measuring HER2-receptor expression in metastatic breast cancer using [68Ga]ABY-025 affibody PET/CT. Theranostics. 2016;6:262–71.
PubMed
PubMed Central
Google Scholar
Strosberg J, El-Haddad G, Wolin E, et al. NETTER-1: phase 3 trial of 177 Lu-Dotatate for midgut neuroendocrine Tumors (pancreatic approved as well). N Engl J Med. 2017;376:125–35.
PubMed
PubMed Central
CAS
Google Scholar
Su X, Cheng K, Jeon J, Shen B, Venturin GT, Hu X, Rao J, Chin FT, Wu H, Cheng Z. Comparison of two site-specifically (18)F-labeled affibodies for PET imaging of EGFR positive tumors. Mol Pharm. 2014;11:3947–56.
PubMed
PubMed Central
CAS
Google Scholar
Tolmachev V, Orlova A. Affibody molecules as targeting vectors for PET imaging. Cancers (Basel). 2020;12:651.
CAS
Google Scholar
Tshibangu T, Cawthorne C, Serdons K, Pauwels E, Gsell W, Bormans G, Deroose CM, Cleeren F. Automated GMP compliant production of [18F]AlF-NOTA-octreotide. EJNMMI Radiopharm Chem. 2020. https://doi.org/10.1186/s41181-019-0084-1.
Article
PubMed
PubMed Central
Google Scholar
Van de Wiele C, Dumont F, Dierckx RA, Peers SH, Thornback JR, Slegers G, Thierens H. Biodistribution and dosimetry of (99m)Tc-RP527, a gastrin-releasing peptide (GRP) agonist for the visualization of GRP receptor-expressing malignancies. J Nucl Med. 2001;42:1722–7.
PubMed
Google Scholar
Van de Wiele C, Phonteyne P, Pauwels P, Goethals I, Van den Broecke R, Cocquyt V, Dierckx RA. Gastrin-releasing peptide receptor imaging in human breast carcinoma versus immunohistochemistry. J Nucl Med. 2008;49:260 LP-264 LP.
Google Scholar
van der Veen EL, Antunes IF, Maarsingh P, et al. Clinical-grade N-(4-[18F]fluorobenzoyl)-interleukin-2 for PET imaging of activated T-cells in humans. EJNMMI Radiopharm Chem. 2019;4:1–15.
Google Scholar
van der Veen EL, Suurs FV, Cleeren F, Bormans G, Elsinga PH, Hospers GAP, Lub-de Hooge MN, de Vries EGE, de Vries EFJ, Antunes IF. Development and evaluation of interleukin-2 derived radiotracers for PET imaging of T-cells in mice. J Nucl Med (2020). https://doi.org/10.2967/jnumed.119.238782
Varasteh Z, Åberg O, Velikyan I, Lindeberg G, Sörensen J, Larhed M, Antoni G, Sandström M, Tolmachev V, Orlova A. In vitro and in vivo evaluation of a 18F-labeled high affinity NOTA conjugated bombesin antagonist as a PET ligand for GRPR-targeted tumor imaging. PLoS ONE. 2013;8:e81932.
PubMed
PubMed Central
Google Scholar
Waldmann CM, Stuparu AD, van Dam RM, Slavik R. The search for an alternative to [68Ga]Ga-DOTA-TATE in neuroendocrine tumor theranostics: current state of 18F-labeled somatostatin analog development. Theranostics. 2019;9:1336–47.
PubMed
PubMed Central
CAS
Google Scholar
Wan W, Guo N, Pan D, et al. First experience of 18F-Alfatide in lung cancer patients using a new lyophilized kit for rapid radiofluorination. J Nucl Med. 2013;54:691 LP-698 LP.
Google Scholar
Wang J, van Dam RM. High-efficiency production of radiopharmaceuticals via droplet radiochemistry: a review of recent progress. Mol Imaging. 2020;19:1536012120973099.
PubMed
PubMed Central
Google Scholar
Wang Z. ErbB receptors and cancer. In: Wang Z, editor. ErbB receptor signaling: methods and protocols. New York: Springer; 2017. p. 3–35.
Google Scholar
Werner RA, Derlin T, Lapa C, et al. (18)F-Labeled, PSMA-targeted radiotracers: leveraging the advantages of radiofluorination for prostate cancer molecular imaging. Theranostics. 2020;10:1–16.
PubMed
PubMed Central
CAS
Google Scholar
Wester HJ, Keller U, Schottelius M, et al. Disclosing the CXCR4 expression in lymphoproliferative diseases by targeted molecular imaging. Theranostics. 2015;5:618–30.
PubMed
PubMed Central
CAS
Google Scholar
Wu J, Wang S, Zhang X, Teng Z, Wang J, Yung BC, Niu G, Zhu H, Lu G, Chen X. (18)F-Alfatide II PET/CT for identification of breast cancer: a preliminary clinical study. J Nucl Med. 2018;59:1809–16.
PubMed
PubMed Central
CAS
Google Scholar
Xu MJ, Johnson DE, Grandis JR. EGFR-targeted therapies in the post-genomic era. Cancer Metastasis Rev. 2017b;36:463–73.
PubMed
PubMed Central
Google Scholar
Xu Y, Bai Z, Huang Q, Pan Y, Pan D, Wang L, Yan J, Wang X, Yang R, Yang M. PET of HER2 expression with a novel 18FAl labeled affibody. J Cancer. 2017a;8:1170–8.
PubMed
PubMed Central
CAS
Google Scholar
Yan X, Niu G, Wang Z, Yang X, Kiesewetter DO, Jacobson O, Shen B, Chen X. Al[18F]NOTA-T140 peptide for noninvasive visualization of CXCR4 expression. Mol Imaging Biol. 2016;18:135–42.
PubMed
PubMed Central
CAS
Google Scholar
Young JD, Abbate V, Imberti C, Meszaros LK, Ma MT, Terry SYA, Hider RC, Mullen GE, Blower PJ. (68)Ga-THP-PSMA: a PET imaging agent for prostate cancer offering rapid, room-temperature, 1-step kit-based radiolabeling. J Nucl Med. 2017;58:1270–7.
PubMed
CAS
Google Scholar
Yu C, Pan D, Mi B, Xu Y, Lang L, Niu G, Yang M, Wan W, Chen X. (18)F-Alfatide II PET/CT in healthy human volunteers and patients with brain metastases. Eur J Nucl Med Mol Imaging. 2015;42:2021–8.
PubMed
PubMed Central
CAS
Google Scholar
Yuan Z, Nodwell MB, Yang H, Malik N, Merkens H, Bénard F, Martin RE, Schaffer P, Britton R. Site-selective, late-stage C−H 18F-fluorination on unprotected peptides for positron emission tomography imaging. Angew Chem Int Ed. 2018;57:12733–6.
CAS
Google Scholar
Zha Z, Choi SR, Ploessl K, Alexoff D, Zhao R, Zhu L, Kung HF. Radiolabeling optimization and preclinical evaluation of the new PSMA imaging agent [(18)F]AlF-P16-093. Bioconjugate Chem. 2021. https://doi.org/10.1021/acs.bioconjchem.1c00177.
Article
Google Scholar
Zhang H, Liu N, Gao S, et al. Can an 18F-ALF-NOTA-PRGD2 PET/CT scan predict treatment sensitivity to concurrent chemoradiotherapy in patients with newly diagnosed glioblastoma? J Nucl Med. 2016;57:524–9.
PubMed
CAS
Google Scholar
Zhang X, Liu F, Payne AC, Nickels ML, Bellan LM, Manning HC. High-yielding radiosynthesis of [(68)Ga]Ga-PSMA-11 using a low-cost microfluidic device. Mol Imaging Biol. 2020;22:1370–9.
PubMed
CAS
Google Scholar
Zhou Y, Gao S, Huang Y, et al. A pilot study of (18)F-Alfatide PET/CT imaging for detecting lymph node metastases in patients with non-small cell lung cancer. Sci Rep. 2017;7:2877.
PubMed
PubMed Central
Google Scholar
Zlatopolskiy BD, Endepols H, Krapf P, Guliyev M, Urusova EA, Richarz R, Hohberg M, Dietlein M, Drzezga A, Neumaier B. Discovery of (18)F-JK-PSMA-7, a PET probe for the detection of small PSMA-positive lesions. J Nucl Med. 2019;60:817–23.
PubMed
PubMed Central
CAS
Google Scholar