Albin RL, Young AB, Penney JB. The functional anatomy of basal ganglia disorders. Trends Neurosci. 1989;12:366–75.
Article
CAS
Google Scholar
Andrés J-I, De Angelis M, Alcázar J, Iturrino L, Langlois X, Dedeurwaerdere S, et al. Synthesis, in vivo occupancy, and radiolabeling of potent phosphodiesterase subtype-10 inhibitors as candidates for positron emission tomography imaging. J Med Chem. 2011;54:5820–35. doi:10.1021/jm200536d.
Article
CAS
PubMed
Google Scholar
Bourne JA. SCH 23390: the first selective dopamine D1-like receptor antagonist. CNS Drug Rev. 2001;7:399–414.
Article
CAS
Google Scholar
Celen S, Koole M, Ooms M, De Angelis M, Sannen I, Cornelis J, et al. Preclinical evaluation of [(18)F]JNJ42259152 as a PET tracer for PDE10A. Neuroimage. 2013;82:13–22. doi:10.1016/j.neuroimage.2013.04.123.
Article
CAS
PubMed
Google Scholar
Charych EI, Jiang L-X, Lo F, Sullivan K, Brandon NJ. Interplay of palmitoylation and phosphorylation in the trafficking and localization of phosphodiesterase 10A: implications for the treatment of schizophrenia. J Neurosci. 2010;30:9027–37. doi:10.1523/JNEUROSCI.1635-10.2010.
Article
CAS
PubMed
Google Scholar
Dlaboga D, Hajjhussein H, O’Donnell JM. Chronic haloperidol and clozapine produce different patterns of effects on phosphodiesterase-1B, -4B, and -10A expression in rat striatum. Neuropharmacology. 2008;54:745–54. doi:10.1016/j.neuropharm.2007.12.002.
Article
CAS
PubMed
Google Scholar
Fisone G, Håkansson K, Borgkvist A, Santini E. Signaling in the basal ganglia: postsynaptic and presynaptic mechanisms. Physiol Behav. 2007;92:8–14. doi:10.1016/j.physbeh.2007.05.028.
Article
CAS
PubMed
Google Scholar
Fujishige K, Kotera J, Michibata H, Yuasa K, Takebayashi S, Okumura K, et al. Cloning and characterization of a novel human phosphodiesterase that hydrolyzes both cAMP and cGMP (PDE10A). J Biol Chem. 1999;274:18438–45.
Article
CAS
Google Scholar
Giorgi M, Melchiorri G, Nuccetelli V, D’Angelo V, Martorana A, Sorge R, et al. PDE10A and PDE10A-dependent cAMP catabolism are dysregulated oppositely in striatum and nucleus accumbens after lesion of midbrain dopamine neurons in rat: a key step in parkinsonism physiopathology. Neurobiol Dis. 2011;43:293–303. doi:10.1016/j.nbd.2011.04.006.
Article
CAS
PubMed
Google Scholar
Gresack JE, Seymour PA, Schmidt CJ, Risbrough VB. Inhibition of phosphodiesterase 10A has differential effects on dopamine D1 and D2 receptor modulation of sensorimotor gating. Psychopharmacology (Berl). 2013;231(10):2189–97. doi:10.1007/s00213-013-3371-7.
Article
CAS
Google Scholar
Handa N, Mizohata E, Kishishita S, Toyama M, Morita S, Uchikubo-Kamo T, et al. Crystal structure of the GAF-B domain from human phosphodiesterase 10A complexed with its ligand, cAMP. J Biol Chem. 2008;283:19657–64. doi:10.1074/jbc.M800595200.
Article
CAS
PubMed
Google Scholar
Hess EJ, Albers LJ, Le H, Creese I. Effects of chronic SCH23390 treatment on the biochemical and behavioral properties of D1 and D2 dopamine receptors: potentiated behavioral responses to a D2 dopamine agonist after selective D1 dopamine receptor upregulation. J Pharmacol Exp Ther. 1986;238:846–54.
CAS
PubMed
Google Scholar
Ikoma Y, Watabe H, Hayashi T, Miyake Y, Teramoto N, Minato K, et al. Quantitative evaluation of changes in binding potential with a simplified reference tissue model and multiple injections of [11C]raclopride. Neuroimage. 2009;47:1639–48. doi:10.1016/j.neuroimage.2009.05.099.
Article
PubMed
Google Scholar
Jaber M, Cador M, Dumartin B, Normand E, Stinus L, Bloch B. Acute and chronic amphetamine treatments differently regulate neuropeptide messenger RNA levels and Fos immunoreactivity in rat striatal neurons. Neuroscience. 1995;65:1041–50.
Article
CAS
Google Scholar
Jäger R, Russwurm C, Schwede F, Genieser H-G, Koesling D, Russwurm M. Activation of PDE10 and PDE11 phosphodiesterases. J Biol Chem. 2012;287:1210–9. doi:10.1074/jbc.M111.263806.
Article
CAS
PubMed
Google Scholar
Kuczenski R. Dose response for amphetamine-induced changes in dopamine levels in push-pull perfusates of rat striatum. J Neurochem. 1986;46:1605–11. doi:10.1111/j.1471-4159.1986.tb01783.x.
Article
CAS
PubMed
Google Scholar
Lakics V, Karran EH, Boess FG. Quantitative comparison of phosphodiesterase mRNA distribution in human brain and peripheral tissues. Neuropharmacology. 2010;59:367–74. doi:10.1016/j.neuropharm.2010.05.004.
Article
CAS
PubMed
Google Scholar
Matthiesen K, Nielsen J. Binding of cyclic nucleotides to phosphodiesterase 10A and 11A GAF domains does not stimulate catalytic activity. Biochem J. 2009;423:401–9. doi:10.1042/BJ20090982.
Article
CAS
PubMed
Google Scholar
McCormick PN, Ginovart N, Wilson A a. Isoflurane anaesthesia differentially affects the amphetamine sensitivity of agonist and antagonist D2/D3 positron emission tomography radiotracers: implications for in vivo imaging of dopamine release. Mol Imaging Biol. 2011;13:737–46. doi:10.1007/s11307-010-0380-3.
Article
PubMed
Google Scholar
Megens A, Langlois X, Vanhoof G, Andrés J-I, De Angelis M, Peter B, et al. Combinations comprising pde 2 inhibitors such as 1-aryl-4-methyl- [1,2,4] triazolo [4,3-a] quinoxaline compounds and pde 10 inhibitors for use in the treatment of neurological or metabolic disorders. WIPO patent. WO 2014001314 A1. 2014 Jan 03.
Natesan S, Ashworth S, Nielsen J, Tang S-P, Salinas C, Kealey S, et al. Effect of chronic antipsychotic treatment on striatal phosphodiesterase 10A levels: a [11C]MP-10 PET rodent imaging study with ex vivo confirmation. Transl Psychiatry. 2014;4:e376. doi:10.1038/tp.2014.17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nishi A, Kuroiwa M, Miller DB, O’Callaghan JP, Bateup HS, Shuto T, et al. Distinct roles of PDE4 and PDE10A in the regulation of cAMP/PKA signaling in the striatum. J Neurosci. 2008;28:10460–71. doi:10.1523/JNEUROSCI.2518-08.2008.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pandit J, Forman MD, Fennell KF, Dillman KS, Menniti FS. Mechanism for the allosteric regulation of phosphodiesterase 2A deduced from the X-ray structure of a near full-length construct. Proc Natl Acad Sci U S A. 2009;106:18225–30. doi:10.1073/pnas.0907635106.
Article
PubMed
PubMed Central
Google Scholar
Ren J, Xu H, Choi J-K, Jenkins BG, Chen YI. Dopaminergic response to graded dopamine concentration elicited by four amphetamine doses. Synapse. 2009;63:764–72. doi:10.1002/syn.20659.
Article
CAS
PubMed
PubMed Central
Google Scholar
Richtand NM, Kelsoe JR, Kuczenski R, Segal DS. Quantification of dopamine D1 and D2 receptor mRNA levels associated with the development of behavioral sensitization in amphetamine treated rats. Neurochem Int. 1997;31:131–7.
Article
CAS
Google Scholar
Robertson SD, Matthies HJG, Galli A. A closer look at amphetamine-induced reverse transport and trafficking of the dopamine and norepinephrine transporters. Mol Neurobiol. 2009;39:73–80. doi:10.1007/s12035-009-8053-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Roseboom PH, Gnegy ME. Acute in vivo amphetamine produces a homologous desensitization of dopamine receptor-coupled adenylate cyclase activities and decreases agonist binding to the D1 site. Mol Pharmacol. 1989;35:139–47.
CAS
PubMed
Google Scholar
Russwurm C, Koesling D, Russwurm M. Phosphodiesterase 10A is tethered to a synaptic signaling complex in striatum. J Biol Chem. 2015;290:11936–47. doi:10.1074/jbc.M114.595769.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schmidt W, Reith M. Dopamine and Glutamate in Psychiatric Disorders. Totowa, NJ: Human Press; 2010.
Seeger TF, Bartlett B, Coskran TM, Culp JS, James LC, Krull DL, et al. Immunohistochemical localization of PDE10A in the rat brain. Brain Res. 2003;985:113–26.
Article
CAS
Google Scholar
Selemon LD, Begović A, Williams GV, Castner S a. Reversal of neuronal and cognitive consequences of amphetamine sensitization following chronic treatment with a D1 antagonist. Pharmacol Biochem Behav. 2010;96:325–32. doi:10.1016/j.pbb.2010.06.002.
Article
CAS
PubMed
Google Scholar
Shi X, McGinty JF. D1 and D2 dopamine receptors differentially mediate the activation of phosphoproteins in the striatum of amphetamine-sensitized rats. Psychopharmacology (Berl). 2011;214:653–63. doi:10.1007/s00213-010-2068-4.
Article
CAS
Google Scholar
Simpson JN, Wang JQ, McGinty JF. Repeated amphetamine administration induces a prolonged augmentation of phosphorylated cyclase response element-binding protein and Fos-related antigen immunoreactivity in rat striatum. Neuroscience. 1995;69:441–57.
Article
CAS
Google Scholar
Siuciak JA, McCarthy SA, Chapin DS, Fujiwara RA, James LC, Williams RD, et al. Genetic deletion of the striatum-enriched phosphodiesterase PDE10A: evidence for altered striatal function. Neuropharmacology. 2006;51:374–85. doi:10.1016/j.neuropharm.2006.01.012.
Article
CAS
PubMed
Google Scholar
Siuciak JA, McCarthy SA, Chapin DS, Martin AN, Harms JF, Schmidt CJ. Behavioral characterization of mice deficient in the phosphodiesterase-10A (PDE10A) enzyme on a C57/Bl6N congenic background. Neuropharmacology. 2008;54:417–27. doi:10.1016/j.neuropharm.2007.10.009.
Article
CAS
PubMed
Google Scholar
Skinbjerg M, Liow J-S, Seneca N, Hong J, Lu S, Thorsell A, et al. D2 dopamine receptor internalization prolongs the decrease of radioligand binding after amphetamine: a PET study in a receptor internalization-deficient mouse model. Neuroimage. 2010;50:1402–7. doi:10.1016/j.neuroimage.2010.01.055.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sotty F, Montezinho LP, Steiniger-Brach B, Nielsen J. Phosphodiesterase 10A inhibition modulates the sensitivity of the mesolimbic dopaminergic system to D-amphetamine: involvement of the D1-regulated feedback control of midbrain dopamine neurons. J Neurochem. 2009;109:766–75. doi:10.1111/j.1471-4159.2009.06004.x.
Article
CAS
PubMed
Google Scholar
Tomić M, Vukosavić S, Joksimović J. Acute amphetamine and/or phencyclidine effects on the dopamine receptor specific binding in the rat brain. Eur Neuropsychopharmacol. 1997;7:295–301.
Article
Google Scholar
Traynor JR, Neubig RR. Regulators of G protein signaling & drugs of abuse. Mol Interv. 2005;5:30–41. doi:10.1124/mi.5.1.7.
Article
CAS
PubMed
Google Scholar
Van Laere K, Clerinx K, D’Hondt E, de Groot T, Vandenberghe W. Combined striatal binding and cerebral influx analysis of dynamic 11C-raclopride PET improves early differentiation between multiple-system atrophy and Parkinson disease. J Nucl Med. 2010;51:588–95. doi:10.2967/jnumed.109.070144.
Article
CAS
PubMed
Google Scholar
Van Laere K, Ahmad RU, Hudyana H, Celen S, Dubois K, Schmidt ME, et al. Human biodistribution and dosimetry of 18 F-JNJ42259152, a radioligand for phosphodiesterase 10A imaging. Eur J Nucl Med Mol Imaging. 2013a;40:254–61. doi:10.1007/s00259-012-2270-1.
Article
CAS
PubMed
Google Scholar
Van Laere K, Ahmad RU, Hudyana H, Dubois K, Schmidt ME, Celen S, et al. Quantification of 18 F-JNJ-42259152, a novel phosphodiesterase 10A PET tracer: kinetic modeling and test-retest study in human brain. J Nucl Med. 2013b;54:1285–93. doi:10.2967/jnumed.112.118679.
Article
CAS
PubMed
Google Scholar
Vanderschuren LJ, Kalivas PW. Alterations in dopaminergic and glutamatergic transmission in the induction and expression of behavioral sensitization: a critical review of preclinical studies. Psychopharmacology (Berl). 2000;151:99–120.
Article
CAS
Google Scholar
Wright JM, Dobosiewicz MRS, Clarke PBS. The role of dopaminergic transmission through D1-like and D2-like receptors in amphetamine-induced rat ultrasonic vocalizations. Psychopharmacology (Berl). 2013;225:853–68. doi:10.1007/s00213-012-2871-1.
Article
CAS
Google Scholar
Yin H-S, Chen K, Kalpana S, Shih JC. Differential effects of chronic amphetamine and baclofen administration on cAMP levels and phosphorylation of CREB in distinct brain regions of wild type and monoamine oxidase B-deficient mice. Synapse. 2006;60:573–84. doi:10.1002/syn.20334.
Article
CAS
PubMed
Google Scholar