Al-Ejeh F, Darby JM, Brown MP. The La autoantigen is a malignancy-associated cell death target that is induced by DNA-damaging drugs. Clin cancer Res. 2007a;13:5509s–18s. https://doi.org/10.1158/1078-0432.Ccr-07-0922.
Article
CAS
PubMed
Google Scholar
Al-Ejeh F, Darby JM, Brown MP. Chemotherapy synergizes with Radioimmunotherapy targeting La autoantigen in tumors. PLoS One. 2009b;4:e4558. https://doi.org/10.1371/journal.pone.0004630.
Article
CAS
PubMed
PubMed Central
Google Scholar
Al-Ejeh F, Darby JM, Pensa K, Diener KR, Hayball JD, Brown MP. In vivo targeting of dead tumor cells in a murine tumor model using a monoclonal antibody specific for the la autoantigen. Clin Cancer Res. 2007b;13:5519S–27S. https://doi.org/10.1158/1078-0432.Ccr-07-0964.
Article
CAS
PubMed
Google Scholar
Al-Ejeh F, Darby JM, Tsopelas C, Smyth D, Manavis J, Brown MP. APOMAB (R), a La-specific monoclonal antibody, detects the apoptotic tumor response to life-prolonging and DNA-damaging chemotherapy. PLoS One. 2009a;4. https://doi.org/10.1371/journal.pone.0004558.
Al-Ejeh F, Staudacher AH, Smyth DR, Darby JM, Denoyer D, Tsopelas C, et al. Postchemotherapy and tumor-selective targeting with the La-specific DAB4 monoclonal antibody relates to apoptotic cell clearance. J Nucl Med. 2014;55:772–9. https://doi.org/10.2967/jnumed.113.130559.
Article
CAS
PubMed
Google Scholar
Berg E, Gill H, Marik J, Ogasawara A, Williams S, van Dongen G, et al. Total-body PET and highly stable Chelators together enable meaningful (89) Zr-antibody PET studies up to 30 days after injection. J Nucl Med. 2020;61:453–60. https://doi.org/10.2967/jnumed.119.230961.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cheal SM, Punzalan B, Doran MG, Evans MJ, Osborne JR, Lewis JS, et al. Pairwise comparison of Zr-89- and I-124-labeled cG250 based on positron emission tomography imaging and nonlinear immunokinetic modeling: in vivo carbonic anhydrase IX receptor binding and internalization in mouse xenografts of clear-cell renal cell carcinoma. Eur J Nucl Med Mol Imaging. 2014;41:985–94. https://doi.org/10.1007/s00259-013-2679-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Deri MA, Zeglis BM, Francesconi LC, Lewis JS. PET imaging with Zr-89: from radiochemistry to the clinic. Nucl Med Biol. 2013;40:3–14. https://doi.org/10.1016/j.nucmedbio.2012.08.004.
Article
CAS
PubMed
Google Scholar
Dilworth JR, Pascu SI. The chemistry of PET imaging with zirconium-89. Chem Soc Rev. 2018;47:2554–71. https://doi.org/10.1039/c7cs00014f.
Article
CAS
PubMed
Google Scholar
Dmochowska N, Tieu W, Keller M, Wardill H, Mavrangelos C, Campaniello M, et al. Immuno-PET of innate immune markers CD11b and IL-1beta detect inflammation in murine colitis. J Nucl Med. 2018. https://doi.org/10.2967/jnumed.118.219287.
Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45:228–47. https://doi.org/10.1016/j.ejca.2008.10.026.
Article
CAS
Google Scholar
Fischer G, Seibold U, Schirrmacher R, Wängler B, Wängler C. (89) Zr, a radiometal nuclide with high potential for molecular imaging with PET: chemistry, applications and remaining challenges. Molecules (Basel, Switzerland). 2013;18:6469–90. https://doi.org/10.3390/molecules18066469.
Article
CAS
Google Scholar
Fung EK, Cheal SM, Fareedy SB, Punzalan B, Beylergil V, Amir J, et al. Targeting of radiolabeled J591 antibody to PSMA-expressing tumors: optimization of imaging and therapy based on non-linear compartmental modeling. EJNMMI Res. 2016;6:7. https://doi.org/10.1186/s13550-016-0164-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hagens MHJ, Killestein J, Yaqub MM, van Dongen G, Lammertsma AA, Barkhof F, et al. Cerebral rituximab uptake in multiple sclerosis: a Zr-89-immunoPET pilot study. Mult Scler J. 2018;24:543–5. https://doi.org/10.1177/1352458517704507.
Article
CAS
Google Scholar
Hezareh M, Hessell AJ, Jensen RC, van de Winkel JG, Parren PW. Effector function activities of a panel of mutants of a broadly neutralizing antibody against human immunodeficiency virus type 1. J Virol. 2001;75:12161–8. https://doi.org/10.1128/jvi.75.24.12161-12168.2001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hofheinz F, Butof R, Apostolova I, Zophel K, Steffen IG, Amthauer H, et al. An investigation of the relation between tumor-to-liver ratio (TLR) and tumor-to-blood standard uptake ratio (SUR) in oncological FDG PET. EJNMMI Res. 2016;6. https://doi.org/10.1186/s13550-016-0174-y.
Holland JP, Divilov V, Bander NH, Smith-Jones PM, Larson SM, Lewis JS. 89Zr-DFO-J591 for immunoPET of prostate-specific membrane antigen expression in vivo. J Nucl Med. 2010;51:1293–300. https://doi.org/10.2967/jnumed.110.076174.
Article
CAS
PubMed
PubMed Central
Google Scholar
Holland JP, Sheh Y, Lewis JS. Standardized methods for the production of high specific-activity zirconium-89. Nucl Med Biol. 2009;36:729–39. https://doi.org/10.1016/j.nucmedbio.2009.05.007.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jauw YWS, Menke-van der Houven van Oordt CW, Hoekstra OS, Hendrikse NH, Vugts DJ, Zijlstra JM, et al. Immuno-Positron Emission Tomography with Zirconium-89-Labeled Monoclonal Antibodies in Oncology: What Can We Learn from Initial Clinical Trials? Front Pharmacol. 2016;7:131. https://doi.org/10.3389/fphar.2016.00131.
Article
CAS
PubMed
PubMed Central
Google Scholar
Knowles SM, Wu AM. Advances in immuno-positron emission tomography: antibodies for molecular imaging in oncology. J Clin Oncol. 2012;30:3884–92. https://doi.org/10.1200/JCO.2012.42.4887.
Article
PubMed
PubMed Central
Google Scholar
Lindmo T, Boven E, Cuttitta F, Fedorko J, Bunn PA Jr. Determination of the immunoreactive fraction of radiolabeled monoclonal antibodies by linear extrapolation to binding at infinite antigen excess. J Immunol Methods. 1984;72:77–89. https://doi.org/10.1016/0022-1759(84)90435-6.
Article
CAS
PubMed
Google Scholar
Mendler CT, Gehring T, Wester HJ, Schwaiger M, Skerra A. Zr-89-labeled versus I-124-labeled alpha HER2 fab with optimized plasma half-life for high-contrast tumor imaging in vivo. J Nucl Med. 2015;56:1112–8.
CAS
PubMed
Google Scholar
Murdoch C, Giannoudis A, Lewis CE. Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues. Blood. 2004;104:2224–34. https://doi.org/10.1182/blood-2004-03-1109.
Article
CAS
PubMed
Google Scholar
Ovacik M, Lin K. Tutorial on monoclonal antibody pharmacokinetics and its considerations in early development. Clin Transl Sci. 2018;11:540–52. https://doi.org/10.1111/cts.12567.
Article
PubMed
PubMed Central
Google Scholar
Peacock JG, Christensen CT, Banks KP. RESISTing the need to quantify: putting qualitative FDG-PET/CT tumor response assessment criteria into daily practice. Am J Neuroradiol. 2019;40:1978–86. https://doi.org/10.3174/ajnr.A6294.
Article
CAS
PubMed
Google Scholar
Rudd SE, Roselt P, Cullinane C, Hicks RJ, Donnelly PS. A desferrioxamine B squaramide ester for the incorporation of zirconium-89 into antibodies. Chem Commun. 2016;52:11889–92. https://doi.org/10.1039/c6cc05961a.
Article
CAS
Google Scholar
Smith BA, Smith BD. Biomarkers and molecular probes for cell death imaging and targeted therapeutics. Bioconjug Chem. 2012;23:1989–2006. https://doi.org/10.1021/bc3003309.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sommer G, Rossa C, Chi AC, Neville BW, Heise T. Implication of RNA-binding protein La in proliferation, migration and invasion of lymph node-metastasized hypopharyngeal SCC cells. PLoS One. 2011;6:e25402. https://doi.org/10.1371/journal.pone.0025402.
Article
CAS
PubMed
PubMed Central
Google Scholar
Staudacher AH, Al-Ejeh F, Fraser CK, Darby JM, Roder DM, Ruszkiewicz A, et al. The La antigen is over-expressed in lung cancer and is a selective dead cancer cell target for radioimmunotherapy using the La-specific antibody APOMAB (R). EJNMMI Res. 2014a;4:2. https://doi.org/10.1186/2191-219x-4-2.
Article
PubMed
PubMed Central
Google Scholar
Staudacher AH, Bezak E, Borysenko A, Brown MP. Targeted alpha-therapy using 227Th-APOMAB and cross-fire antitumour effects: preliminary in-vivo evaluation. Nucl Med Commun. 2014b;35:1284–90. https://doi.org/10.1097/MNM.0000000000000199.
Article
CAS
PubMed
Google Scholar
Staudacher AH, Li Y, Liapis V, Hou JJC, Chin D, Dolezal O, et al. APOMAB(R) antibody drug conjugates targeting dead tumor cells are effective in vivo. Mol Cancer Ther. 2018. https://doi.org/10.1158/1535-7163.Mct-18-0842.
Staudacher AH, Liapis V, Tieu W, Wittwer NL, Brown MP. Tumour-associated macrophages process drug and radioconjugates of the dead tumour cell-targeting APOMAB® antibody. J Control Release. 2020;327:779–87.
CAS
PubMed
Google Scholar
Tran HB, Ohlsson M, Beroukas D, Hiscock J, Bradley J, Buyon JP, et al. Subcellular redistribution of la/SSB autoantigen during physiologic apoptosis in the fetal mouse heart and conduction system: a clue to the pathogenesis of congenital heart block. Arthritis Rheum. 2002;46:202–8. https://doi.org/10.1002/1529-0131(200201)46:1<202::Aid-art10062>3.0.Co;2-y.
Article
CAS
PubMed
Google Scholar
Trotta R, Vignudelli T, Candini O, Intine RV, Pecorari L, Guerzoni C, et al. BCR/ABL activates mdm2 mRNA translation via the La antigen. Cancer Cell. 2003;3:145–60.
CAS
PubMed
Google Scholar
van Dongen GA, Visser GW, Lub-de Hooge MN, de Vries EG, Perk LR. Immuno-PET: a navigator in monoclonal antibody development and applications. Oncologist. 2007;12:1379–89. https://doi.org/10.1634/theoncologist.12-12-1379.
Article
CAS
PubMed
Google Scholar
Verel I, Visser GWM, Boerman OC, van Eerd JEM, Finn R, Boellaard R, et al. Long-lived positron emitters zirconium-89 and iodine-124 for scouting of therapeutic radioimmunoconjugates with PET. Cancer Biother Radiopharm. 2003;18:655–61. https://doi.org/10.1089/108497803322287745.
Article
CAS
PubMed
Google Scholar
Vosjan M, Perk LR, Visser GWM, Budde M, Jurek P, Kiefer GE, et al. Conjugation and radiolabeling of monoclonal antibodies with zirconium-89 for PET imaging using the bifunctional chelate p-isothiocyanatobenzyl-desferrioxamine. Nat Protoc. 2010;5:739–43. https://doi.org/10.1038/nprot.2010.13.
Article
CAS
PubMed
Google Scholar
Vugts DJ, Klaver C, Sewing C, Poot AJ, Adamzek K, Huegli S, et al. Comparison of the octadentate bifunctional chelator DFO*-pPhe-NCS and the clinically used hexadentate bifunctional chelator DFO-pPhe-NCS for Zr-89-immuno-PET. Eur J Nucl Med Mol Imaging. 2017;44:286–95. https://doi.org/10.1007/s00259-016-3499-x.
Article
CAS
PubMed
Google Scholar
Wahl RL, Jacene H, Kasamon Y, Lodge MA. From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med. 2009;50:122S–50S. https://doi.org/10.2967/jnumed.108.057307.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wright BD, Lapi SE. Designing the magic bullet? The advancement of Immuno-PET into clinical use. J Nucl Med. 2013;54:1171–4. https://doi.org/10.2967/jnumed.113.126086.
Article
CAS
PubMed
Google Scholar
Wu AM. Engineered antibodies for molecular imaging of cancer. Methods. 2014;65:139–47. https://doi.org/10.1016/j.ymeth.2013.09.015.
Article
CAS
PubMed
Google Scholar
Zhang DJ, Gao M, Jin QM, Ni YC, Zhang J. Updated developments on molecular imaging and therapeutic strategies directed against necrosis. Acta Pharm Sin B. 2019;9:455–68. https://doi.org/10.1016/j.apsb.2019.02.002.
Article
PubMed
PubMed Central
Google Scholar
Zhang DJ, Jin QM, Jiang CH, Gao M, Ni YC, Zhang J. Imaging cell death: focus on early evaluation of tumor response to therapy. Bioconjug Chem. 2020;31:1025–51. https://doi.org/10.1021/acs.bioconjchem.0c00119.
Article
CAS
PubMed
Google Scholar
Zhao M, Beauregard DA, Loizou L, Davletov B, Brindle KM. Non-invasive detection of apoptosis using magnetic resonance imaging and a targeted contrast agent. Nat Med. 2001;7:1241–4. https://doi.org/10.1038/nm1101-1241.
Article
CAS
PubMed
Google Scholar