Abrarov OA, Aminova MM. Production of a promethium-149 radioactive isotope (carrier-free). Dokl Akad Nauk UzSSR. 1975;11:17–8.
Google Scholar
Aliev RA, Khomenko IA, Kormazeva ES. Separation of 167Tm, 165Er and 169Yb from erbium targets irradiated by 60 MeV alpha particles. J Radioanal Nucl Chem. 2021;329:983–9. https://doi.org/10.1007/s10967-021-07865-y.
Article
CAS
Google Scholar
Allen BJ, Goozee G, Sarkar S, Beyer G, Morel C, Byrne AP. Production of terbium-152 by heavy ion reactions and proton induced spallation. Appl Radiat Isot. 2001;54:53–8. https://doi.org/10.1016/s0969-8043(00)00164-0.
Article
CAS
PubMed
Google Scholar
Alliot C, Kerdjoudj R, Michel N, Haddad F, Huclier-Markai S. Cyclotron production of high purity (44m,44)Sc with deuterons from (44)CaCO3 targets. Nucl Med Biol. 2015;42(6):524–9.
Article
CAS
PubMed
Google Scholar
Aluicio-Sarduy E, Hernandez R, Olson AP, Barnhart TE, Cai W, Ellison PA, et al. Production and in vivo PET/CT imaging of the theranostic pair 132/135La. Sci Rep. 2019;9:10658. https://doi.org/10.1038/s41598-019-47137-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Aluicio-Sarduy E, Barnhart TE, Weichert J, Hernandez R, Engle JW. Cyclotron-produced (132)La as a PET imaging surrogate for therapeutic (225)Ac. J Nucl Med. 2021;62:1012–5. https://doi.org/10.2967/jnumed.120.255794.
Article
CAS
PubMed
Google Scholar
AluicioSarduy E, Thiele NA, Martin KE, Vaughn BA, Devaraj J, Olson AP, Barnhart TE, Wilson JJ, Boros E, Engle JW. Establishing radiolanthanum chemistry for targeted nuclear medicine applications. Chem A Eur J. 2020;26(6):1238–42. https://doi.org/10.1002/chem.201905202.
Article
CAS
Google Scholar
Amoroso AJ, Fallis IA, Pope SJA. Chelating agents for radiolanthanides: applications to imaging and therapy. Coord Chem Rev. 2017;340:198–219. https://doi.org/10.1016/j.ccr.2017.01.010.
Article
CAS
Google Scholar
Anderson P, Nuñez R. Samarium lexidronam (153Sm-EDTMP): skeletal radiation for osteoblastic bone metastases and osteosarcoma. Expert Rev Anticancer Ther. 2007;7:1517–27. https://doi.org/10.1586/14737140.7.11.1517.
Article
CAS
PubMed
Google Scholar
Atkins HL. Overview of nuclides for bone pain palliation. Appl Radiat Isot. 1998;49:277–83. https://doi.org/10.1016/S0969-8043(97)00039-0.
Article
CAS
PubMed
Google Scholar
Bahrami-Samani A, Bagheri R, Jalilian AR, Shirvani-ARAni S, Ghannadi-Maragheh M, Shamsaee M. Production, quality control and pharmacokinetic studies of 166Ho-EDTMP for therapeutic applications. Sci Pharm. 2010;78:423–34. https://doi.org/10.3797/scipharm.1004-21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bartoś B, Majkowska A, Krajewski S, Bilewicz A. New separation method of no-carrier-added 47Sc from titanium targets. Radiochim Acta. 2012;100:457–62. https://doi.org/10.1524/ract.2012.1938.
Article
CAS
Google Scholar
Baum RP, Singh A, Benešová M, Vermeulen C, Gnesin S, Köster U, et al. Clinical evaluation of the radiolanthanide terbium-152: first-in-human PET/CT with 152Tb-DOTATOC. Dalton Trans. 2017;46:14638–46. https://doi.org/10.1039/C7DT01936J.
Article
CAS
PubMed
Google Scholar
Bayouth JE, Macey DJ, Kasi LP, Garlich JR, McMillan K, Dimopoulos MA, et al. Pharmacokinetics, dosimetry and toxicity of holmium-166-DOTMP for bone marrow ablation in multiple myeloma. J Nucl Med. 1995a;36:730–7.
CAS
PubMed
Google Scholar
Bayouth JE, Macey DJ, Boyer AL, Champlin RE. Radiation dose distribution within the bone marrow of patients receiving holmium-166-labeled-phosphonate for marrow ablation. Med Phys. 1995b;22:743–53. https://doi.org/10.1118/1.597491.
Article
CAS
PubMed
Google Scholar
Beyer GJ, Čomor JJ, Daković M, Soloviev D, Tamburella C, Hagebø E, et al. Production routes of the alpha emitting 149Tb for medical application. Radiochim Acta. 2002;90:247–52. https://doi.org/10.1524/ract.2002.90.5_2002.247.
Article
CAS
Google Scholar
Beyer GJ, Miederer M, Vranješ-Đurić S, Čomor JJ, Künzi G, Hartley O, et al. Targeted alpha therapy in vivo: direct evidence for single cancer cell kill using 149Tb-rituximab. Eur J Nucl Med Mol Imaging. 2004a;31:547–54. https://doi.org/10.1007/s00259-003-1413-9.
Article
CAS
PubMed
Google Scholar
Beyer GJ, Zeisler SK, Becker DW. The Auger-electron emitter 165Er: excitation function of the 165Ho(p, n)165Er process. Radiochim Acta. 2004b;92:219–22.
Article
CAS
Google Scholar
Bokhari TH, Mushtaq A, Khan IU. Separation of no-carrier-added radioactive scandium from neutron irradiated titanium. J Radioanal Nucl Chem. 2010;283:389–93. https://doi.org/10.1007/s10967-009-0370-6.
Article
CAS
Google Scholar
Bombardieri E, Seregni E, Evangelista L, Chiesa C, Chiti A. Clinical applications of nuclear medicine targeted therapy. Springer; 2018.
Book
Google Scholar
Bouchet LG, Bolch WE, Goddu SM, Howell RW, Rao DV. Considerations in the selection of radiopharmaceuticals for palliation of bone pain from metastatic osseous lesions. J Nucl Med. 2000;41:682–7.
CAS
PubMed
Google Scholar
Bourgeois M, Isnard H, Gourgiotis A, Stadelmann G, Gautier C, Mialle S, et al. Sm isotope composition and Sm/Eu ratio determination in an irradiated 153Eu sample by ion exchange chromatography-quadrupole inductively coupled plasma mass spectrometry combined with double spike isotope dilution technique. J Anal at Spectrom. 2011;26:1660–6. https://doi.org/10.1039/C1JA10070J.
Article
CAS
Google Scholar
Bousis C, Emfietzoglou D, Hadjidoukas P, Nikjoo H. Monte Carlo single-cell dosimetry of Auger-electron emitting radionuclides. Phys Med Biol. 2010;55:2555–72. https://doi.org/10.1088/0031-9155/55/9/009.
Article
CAS
PubMed
Google Scholar
Buchegger F, Perillo-Adamer F, Dupertuis YM, Bischof DA. Auger radiation targeted into DNA: a therapy perspective. Eur J Nucl Med Mol Imaging. 2006;33:1352–63. https://doi.org/10.1007/s00259-006-0187-2.
Article
PubMed
Google Scholar
Bunney LR, Abriam JO, Scadden EM. Half-lives of 149Pm and 151Pm. J Inorg Nucl Chem. 1960;12:228–33. https://doi.org/10.1016/0022-1902(60)80365-X.
Article
CAS
Google Scholar
Carzaniga TS, Auger M, Braccini S, Bunka M, Ereditato A, Nesteruk KP, et al. Measurement of 43Sc and 44Sc production cross-section with an 18MeV medical PET cyclotron. Appl Radiat Isot. 2017;129:96–102. https://doi.org/10.1016/j.apradiso.2017.08.013.
Article
CAS
PubMed
Google Scholar
Chakraborty S, Das T, Chirayil V, Lohar SP, Sarma HD. Erbium-169 labeled hydroxyapatite particulates for use in radiation synovectomy of digital joints – a preliminary investigation. Radiochim Acta. 2014;102:443–50. https://doi.org/10.1515/ract-2013-2166.
Article
CAS
Google Scholar
Chakravarty R, Chakraborty S, Chirayil V, Dash A. Reactor production and electrochemical purification of 169Er: a potential step forward for its utilization in in vivo therapeutic applications. Nucl Med Biol. 2014;41:163–70. https://doi.org/10.1016/j.nucmedbio.2013.11.009.
Article
CAS
PubMed
Google Scholar
Chakravarty R, Chakraborty S, Khan MS, Ram R, Sarma HD, Dash A. An electrochemical approach for removal of radionuclidic contaminants of Eu from 153Sm for effective use in metastatic bone pain palliation. Nucl Med Biol. 2018;58:8–19. https://doi.org/10.1016/j.nucmedbio.2017.11.010.
Article
CAS
PubMed
Google Scholar
Cho BC, Kim EH, Choi HJ, Kim JH, Roh JK, Chung HC, et al. A pilot study of trans-arterial injection of 166Holmium-Chitosan complex for treatment of small hepatocellular carcinoma. Yonsei Med J. 2005;46:799–805.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chopra A. [(149/152/155/161)Tb]-Labeled DOTA-folate conjugated to an albumin-binding entity. In: Molecular imaging and contrast agent database (MICAD). Bethesda (MD): National Center for Biotechnology Information (US); 2004.
Christoforidou AV, Saliba RM, Williams P, Qazilbash M, Roden L, Aleman A, et al. Results of a retrospective single institution analysis of targeted skeletal radiotherapy with (166)Holmium-DOTMP as conditioning regimen for autologous stem cell transplant for patients with multiple myeloma. Impact on transplant outcomes. Biol Blood Marrow Transplant. 2007;13:543–9. https://doi.org/10.1016/j.bbmt.2006.12.448.
Article
PubMed
Google Scholar
Clough TJ, Jiang L, Wong K-L, Long NJ. Ligand design strategies to increase stability of gadolinium-based magnetic resonance imaging contrast agents. Nat Commun. 2019;10:1420. https://doi.org/10.1038/s41467-019-09342-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cotton S. Lanthanide and actinide chemistry. Chichester: John Wiley & Sons Ltd; 2006.
Book
Google Scholar
Cutler CS, Smith CJ, Ehrhardt GJ, Tyler TT, Jurisson SS, Deutsch E. Current and potential therapeutic uses of lanthanide radioisotopes. Cancer Biother Radiopharm. 2000;15:531–45. https://doi.org/10.1089/cbr.2000.15.531.
Article
CAS
PubMed
Google Scholar
Dadachova E, Mirzadeh S, Lambrecht RM, Hetherington EL, Knapp FF. Separation of carrier-free holmium-166 from neutron-irradiated dysprosium targets. Anal Chem. 1994;66:4272–7. https://doi.org/10.1021/ac00095a024.
Article
CAS
Google Scholar
Dadachova E, Mirzadeh S, Lambrecht RM, Hetherington EL, Knapp FF Jr. Separation of carrier-free166Ho from Dy2O3 targets by partition chromatography and electrophoresis. J Radioanal Nucl Chem Lett. 1995;199:115–23. https://doi.org/10.1007/BF02162474.
Article
CAS
Google Scholar
Danon Y, Werner CJ, Youk GU, Block RC, Slovacek RE, Francis NC, et al. Neutron total cross-section measurements and resonance parameter analysis of holmium, thulium, and erbium from 0.001 to 20 eV. Nucl Sci Eng. 1998;128:61–9.
Article
CAS
Google Scholar
Das T, Banerjee S. Radiopharmaceuticals for metastatic bone pain palliation: available options in the clinical domain and their comparisons. Clin Exp Metas. 2017;34:1–10. https://doi.org/10.1007/s10585-016-9831-9.
Article
CAS
Google Scholar
Das T, Pillai MRA. Options to meet the future global demand of radionuclides for radionuclide therapy. Nucl Med Biol. 2013;40:23–32. https://doi.org/10.1016/j.nucmedbio.2012.09.007.
Article
CAS
PubMed
Google Scholar
Das T, Chakraborty S, Sarma HD, Tandon P, Banerjee S, Venkatesh M, et al. 170Tm-EDTMP: a potential cost-effective alternative to 89SrCl2 for bone pain palliation. Nucl Med Biol. 2009;36:561–8. https://doi.org/10.1016/j.nucmedbio.2009.02.002.
Article
CAS
PubMed
Google Scholar
Das T, Guleria M, Parab A, Kale C, Shah H, Sarma HD, et al. Clinical translation of 177Lu-labeled PSMA-617: initial experience in prostate cancer patients. Nucl Med Biol. 2016;43:296–302. https://doi.org/10.1016/j.nucmedbio.2016.02.002.
Article
CAS
PubMed
Google Scholar
Das T, Shinto A, Kamaleshwaran KK, Sarma HD, Mohammed SK, Mitra A, et al. Radiochemical studies, pre-clinical investigation and preliminary clinical evaluation of 170Tm-EDTMP prepared using in-house freeze-dried EDTMP kit. Appl Radiat Isot. 2017;122:7–13. https://doi.org/10.1016/j.apradiso.2016.12.058.
Article
CAS
PubMed
Google Scholar
DeNardo GL, DeNardo SJ. Concepts, consequences, and implications of theranosis. Semin Nucl Med. 2012;42:147–50. https://doi.org/10.1053/j.semnuclmed.2011.12.003.
Article
PubMed
Google Scholar
Dikiy NP, Dovbnya AN, Lyashko YV, Medvedeva EP, Medvedev DV, Uvarov VL. Photonuclear production of Pm-149. Voprosy Atomnoj Nauki i Tekhniki. 2015:157–9.
Dmitriev PP, Molin GA, Dmitrieva ZP. Production of155Tb for nuclear medicine in the reactions155Gd(pn),156Gd(p2n), and155Gd(d2n). Soviet Atomic Energy. 1989;66:470–2. https://doi.org/10.1007/BF01123521.
Article
Google Scholar
Domnanich KA, Eichler R, Müller C, Jordi S, Yakusheva V, Braccini S, et al. Production and separation of 43Sc for radiopharmaceutical purposes. EJNMMI Radiopharm Chem. 2017a;2:14. https://doi.org/10.1186/s41181-017-0033-9.
Article
PubMed
PubMed Central
Google Scholar
Domnanich KA, Müller C, Benešová M, Dressler R, Haller S, Köster U, et al. 47Sc as useful β–-emitter for the radiotheragnostic paradigm: a comparative study of feasible production routes. EJNMMI Radiopharm Chem. 2017b;2:5. https://doi.org/10.1186/s41181-017-0024-x.
Article
PubMed
PubMed Central
Google Scholar
Donanzam BA, Campos TPR, Dalmázio I, Valente ES. Synthesis and characterization of calcium phosphate loaded with Ho-166 and Sm-153: a novel biomaterial for treatment of spine metastases. J Mater Sci Mater Med. 2013;24:2873–80. https://doi.org/10.1007/s10856-013-5024-0.
Article
CAS
PubMed
Google Scholar
Eary JF, Collins C, Stabin M, Vernon C, Petersdorf S, Baker M, et al. Samarium-153-EDTMP biodistribution and dosimetry estimation. J Nucl Med. 1993;34:1031–6.
CAS
PubMed
Google Scholar
El-Amm J, Aragon-Ching JB. Targeting bone metastases in metastatic castration-resistant prostate cancer. Clin Med Insights Oncol. 2016. https://doi.org/10.4137/CMO.Ss30751.
Article
PubMed
PubMed Central
Google Scholar
Elliott R. Magnetic properties of rare earth metals. Springer Science & Business Media; 2013.
Google Scholar
Elzahry M, Diab W, Sinzinger H. The optimal efficacy of a single therapeutic dose of Sm-153 EDTMP in the treatment of painless skeletal metastases. J Clin Exp Radiol. 2018;1:1–7.
Google Scholar
Eppard E, de la Fuente A, Benešová M, Khawar A, Bundschuh RA, Gärtner FC, et al. Clinical translation and first in-human use of [44Sc]Sc-PSMA-617 for PET imaging of metastasized castrate-resistant prostate cancer. Theranostics. 2017;7:4359–69. https://doi.org/10.7150/thno.20586.
Article
CAS
PubMed
PubMed Central
Google Scholar
Farahati J, Elliott J, Höppner S, Stein L, Gilman E, Kumm D, et al. Post-radiosynovectomy imaging of Er-169 using scintigraphy and autoradiography. Clin Case Rep. 2017;5:1048–50. https://doi.org/10.1002/ccr3.987.
Article
PubMed
PubMed Central
Google Scholar
Favaretto C, Talip Z, Borgna F, Grundler PV, Dellepiane G, Sommerhalder A, et al. Cyclotron production and radiochemical purification of terbium-155 for SPECT imaging. EJNMMI Radiopharm Chem. 2021;6:37. https://doi.org/10.1186/s41181-021-00153-w.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fiaccabrino DE, Kunz P, Radchenko V. Potential for production of medical radionuclides with on-line isotope separation at the ISAC facility at TRIUMF and particular discussion of the examples of 165Er and 155Tb. Nucl Med Biol. 2021;94–95:81–91. https://doi.org/10.1016/j.nucmedbio.2021.01.003.
Article
CAS
PubMed
Google Scholar
Filippi L, Chiaravalloti A, Schillaci O, Cianni R, Bagni O. Theranostic approaches in nuclear medicine: current status and future prospects. Expert Rev Med Devices. 2020;17:331–43. https://doi.org/10.1080/17434440.2020.1741348.
Article
CAS
PubMed
Google Scholar
Filosofov DV, Loktionova NS, Rösch F. A 44Ti/44Sc radionuclide generator for potential application of 44Sc-based PET-radiopharmaceuticals. Radiochim Acta. 2010;98:149–56. https://doi.org/10.1524/ract.2010.1701.
Article
CAS
Google Scholar
Fonslet J, Lee B, Tran T, Siragusa M, Jensen M, Kibedi T, et al. 135La as an Auger-electron emitter for targeted internal radiotherapy. Phys Med Biol. 2017. https://doi.org/10.1088/1361-6560/aa9b44.
Article
PubMed
Google Scholar
Formento-Cavaier R, Köster U, Crepieux B, Gadelshin VM, Haddad F, Stora T, et al. Very high specific activity erbium 169Er production for potential receptor-targeted radiotherapy. Nucl Instrum Methods Phys Res Sect B. 2020;463:468–71. https://doi.org/10.1016/j.nimb.2019.04.022.
Article
CAS
Google Scholar
Fricker SP. The therapeutic application of lanthanides. Chem Soc Rev. 2006;35:524–33. https://doi.org/10.1039/B509608C.
Article
CAS
PubMed
Google Scholar
Giralt S, Bensinger W, Goodman M, Podoloff D, Eary J, Wendt R, et al. 166Ho-DOTMP plus melphalan followed by peripheral blood stem cell transplantation in patients with multiple myeloma: results of two phase 1/2 trials. Blood. 2003;102:2684–91. https://doi.org/10.1182/blood-2002-10-3250.
Article
CAS
PubMed
Google Scholar
Goeckeler WF, Edwards B, Volkert WA, Holmes RA, Simon J, Wilson D. Skeletal localization of samarium-153 chelates: potential therapeutic bone agents. J Nucl Med. 1987;28:495–504.
PubMed
Google Scholar
Goyal J, Antonarakis ES. Bone-targeting radiopharmaceuticals for the treatment of prostate cancer with bone metastases. Cancer Lett. 2012;323:135–46. https://doi.org/10.1016/j.canlet.2012.04.001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gracheva N, Carzaniga TS, Schibli R, Braccini S, van der Meulen NP. 165Er: a new candidate for Auger electron therapy and its possible cyclotron production from natural holmium targets. Appl Radiat Isot. 2020;159:109079. https://doi.org/10.1016/j.apradiso.2020.109079.
Article
CAS
PubMed
Google Scholar
Graf J, Ulrich-Frank P, Henning J, Denecke T, Arsenic R, Brenner W, et al. Prognostic significance of somatostatin receptor heterogeneity in progressive neuroendocrine tumor treated with Lu-177 DOTATOC or Lu-177 DOTATATE. Eur J Nucl Med Mol Imaging. 2020;47:881–94. https://doi.org/10.1007/s00259-019-04439-9.
Article
CAS
PubMed
Google Scholar
Gras M, Papaiconomou N, Chainet E, Tedjar F, Billard I. Separation of cerium(III) from lanthanum(III), neodymium(III) and praseodymium(III) by oxidation and liquid-liquid extraction using ionic liquids. Sep Purif Technol. 2017;178:169–77. https://doi.org/10.1016/j.seppur.2017.01.035.
Article
CAS
Google Scholar
Guerra Liberal FDC, Tavares AAS, Tavares JMRS. Palliative treatment of metastatic bone pain with radiopharmaceuticals: a perspective beyond Strontium-89 and Samarium-153. Appl Radiat Isot. 2016;110:87–99. https://doi.org/10.1016/j.apradiso.2016.01.003.
Article
CAS
PubMed
Google Scholar
Ha EJ, Gwak H-S, Rhee CH, Youn SM, Choi C-W, Cheon GJ. Intracavitary radiation therapy for recurrent cystic brain tumors with holmium-166-Chico : a pilot study. J Korean Neurosurg Soc. 2013;54:175–82. https://doi.org/10.3340/jkns.2013.54.3.175.
Article
PubMed
PubMed Central
Google Scholar
Hashikin NA, Yeong CH, Abdullah BJ, Ng KH, Chung LY, Dahalan R, et al. Neutron activated samarium-153 microparticles for transarterial radioembolization of liver tumour with post-procedure imaging capabilities. PLoS ONE. 2015;10:e0138106. https://doi.org/10.1371/journal.pone.0138106.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hashikin NAA, Yeong CH, Guatelli S, Abdullah BJJ, Ng KH, Malaroda A, et al. Organ doses from hepatic radioembolization with 90Y, 153Sm, 166Ho and 177Lu: A Monte Carlo simulation study using Geant4. J Phys Conf Ser. 2016;694:012059. https://doi.org/10.1088/1742-6596/694/1/012059.
Article
CAS
Google Scholar
Hassan HE, Alabyad M, Mohamed GY. Production of Ti-44 -> Sc-44 generator in comparison with direct routes by cyclotrons: cross section evaluation using nuclear models codes. Arab J Nucl Sci Appl. 2018;51:57–72.
Google Scholar
Hermanne A, Adam-Rebeles R, Tarkanyi F, Takacs S, Csikai J, Takacs MP, et al. Deuteron induced reactions on Ho and La: experimental excitation functions and comparison with code results. Nucl Instrum Methods Phys Res Sect B. 2013;311:102–11. https://doi.org/10.1016/j.nimb.2013.06.014.
Article
CAS
Google Scholar
Hirsch AE, Medich DC, Rosenstein BS, Martel CB, Hirsch JA. Radioisotopes and vertebral augmentation: dosimetric analysis of a novel approach for the treatment of malignant compression fractures. Radiother Oncol. 2008;87:119–26. https://doi.org/10.1016/j.radonc.2008.01.010.
Article
CAS
PubMed
Google Scholar
Hu F, Cutler CS, Hoffman T, Sieckman G, Volkert WA, Jurisson SS. Pm-149 DOTA bombesin analogs for potential radiotherapy: in vivo comparison with Sm-153 and Lu-177 labeled DO3A-amide-βAla-BBN(7–14)NH2. Nucl Med Biol. 2002;29:423–30. https://doi.org/10.1016/S0969-8051(02)00290-1.
Article
CAS
PubMed
Google Scholar
Huh R, Park YS, Lee JD, Chung YS, Park YG, Chung SS, et al. Therapeutic effects of Holmium-166 chitosan complex in rat brain tumor model. Yonsei Med J. 2005;46:51–60. https://doi.org/10.3349/ymj.2005.46.1.51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Humm JL. Dosimetric aspects of radiolabeled antibodies for tumor therapy. J Nucl Med. 1986;27:1490–7.
CAS
PubMed
Google Scholar
IAEA-TECDOC M. 1340. Manual for reactor produced radioisotope. Vienna: International Atomic Energy Agency; 2003.
Google Scholar
Islami-Rad SZ, Shamsaei M, Gholipour-Peyvandi R, Ghannadi-Maragheh M. Reactor production and purification of 153Sm radioisotope via natSm target irradiation. Radiochemistry. 2011;53:642–5. https://doi.org/10.1134/S1066362211060129.
Article
CAS
Google Scholar
Jelinek L, Wei Y, Arai T, Kumagai M. Selective Eu(III) electro-reduction and subsequent separation of Eu(II) from rare Earths(III) via HDEHP impregnated resin. Solvent Extr Ion Exch. 2007;25:503–13. https://doi.org/10.1080/07366290701415911.
Article
CAS
Google Scholar
Jelinek L, Wei Y, Arai T, Kumagai M. Study on separation of Eu(II) from trivalent rare earths via electro-reduction and ion exchange. J Alloy Compd. 2008;451:341–3. https://doi.org/10.1016/j.jallcom.2007.04.139.
Article
CAS
Google Scholar
Jong J-d, Oprea-Lager DE, Hooft L, de Klerk JMH, Bloemendal HJ, Verheul HMW, et al. Radiopharmaceuticals for Palliation of bone pain in patients with castration-resistant prostate cancer metastatic to bone: a systematic review. Eur Urol. 2016;70:416–26. https://doi.org/10.1016/j.eururo.2015.09.005.
Article
PubMed
Google Scholar
Kajan I, Heinitz S, Dressler R, Reichel P, Kivel N, Schumann D. Emission probability of the 66.7 keV \ensuremath{\gamma} transition in the decay of 171Tm. Phys Rev C. 2018;98:055802. https://doi.org/10.1103/PhysRevC.98.055802.
Article
CAS
Google Scholar
Kalef-Ezra JA, Valakis ST, Pallada S. Samarium-153 EDTMP for metastatic bone pain palliation: the impact of europium impurities. Physica Med. 2015;31:104–7. https://doi.org/10.1016/j.ejmp.2014.10.078.
Article
CAS
Google Scholar
Karavida N, Notopoulos A. Radiation synovectomy: an effective alternative treatment for inflamed small joints. Hippokratia. 2010;14:22–7.
CAS
PubMed
PubMed Central
Google Scholar
Kassis AI. The amazing world of auger electrons. Int J Radiat Biol. 2004;80:789–803. https://doi.org/10.1080/09553000400017663.
Article
CAS
PubMed
Google Scholar
Kassis AI. Therapeutic radionuclides: biophysical and radiobiologic principles. Semin Nucl Med. 2008;38:358–66. https://doi.org/10.1053/j.semnuclmed.2008.05.002.
Article
PubMed
PubMed Central
Google Scholar
Ketring AR, Ehrhardt GJ, Embree MF, Bailey KD, Tyler TT, Gawenis JA, et al. Production and supply of high specific activity radioisotopes for radiotherapy applications. ALASBIMN J. 2003;5:7.
Google Scholar
Kieck T, Dorrer H, Düllmann CE, Gadelshin V, Schneider F, Wendt K. Highly efficient isotope separation and ion implantation of 163Ho for the ECHo project. Nucl Instrum Methods Phys Res Sect A. 2019;945:162602. https://doi.org/10.1016/j.nima.2019.162602.
Article
CAS
Google Scholar
Kim JK, Han K-H, Lee JT, Paik YH, Ahn SH, Lee JD, et al. Long-term clinical outcome of phase IIb clinical trial of percutaneous injection with holmium-166/chitosan complex (milican) for the treatment of small hepatocellular carcinoma. Clin Cancer Res. 2006;12:543–8. https://doi.org/10.1158/1078-0432.Ccr-05-1730.
Article
CAS
PubMed
Google Scholar
Knapp FF, Dash A. Radiopharmaceuticals for therapy. Springer; 2016.
Book
Google Scholar
Knut L. Radiosynovectomy in the therapeutic management of arthritis. World J Nucl Med. 2015;14:10–5. https://doi.org/10.4103/1450-1147.150509.
Article
PubMed
PubMed Central
Google Scholar
Kolesnikov-Gauthier H, Lemoine N, Tresch-Bruneel E, Olivier A, Oudoux A, Penel N. Efficacy and safety of 153Sm-EDTMP as treatment of painful bone metastasis: a large single-center study. Support Care Cancer. 2018;26:751–8. https://doi.org/10.1007/s00520-017-3885-3.
Article
PubMed
Google Scholar
Kolsky KL, Joshi V, Mausner LF, Srivastava SC. Radiochemical purification of no-carrier-added scandium-47 for radioimmunotherapy. Appl Radiat Isot. 1998;49:1541–9. https://doi.org/10.1016/S0969-8043(98)00016-5.
Article
CAS
PubMed
Google Scholar
Kormazeva ES, Khomenko IA, Unezhev VN, Aliev RA. Experimental study of α-particle induced reactions on natural erbium for the production of Auger-emitters 167Tm, 165Er and 169Yb. Appl Radiat Isot. 2021;177:109919. https://doi.org/10.1016/j.apradiso.2021.109919.
Article
CAS
PubMed
Google Scholar
Kostelnik TI, Orvig C. Radioactive main group and rare earth metals for imaging and therapy. Chem Rev. 2019;119:902–56. https://doi.org/10.1021/acs.chemrev.8b00294.
Article
CAS
PubMed
Google Scholar
Krajewski S, Cydzik I, Abbas K, Bulgheroni A, Simonelli F, Holzwarth U, et al. Cyclotron production of 44Sc for clinical application. Radiochim Acta. 2013;101:333–8. https://doi.org/10.1524/ract.2013.2032.
Article
CAS
Google Scholar
Kratochwil C, Fendler WP, Eiber M, Baum R, Bozkurt MF, Czernin J, et al. EANM procedure guidelines for radionuclide therapy with 177Lu-labelled PSMA-ligands (177Lu-PSMA-RLT). Eur J Nucl Med Mol Imaging. 2019;46:2536–44. https://doi.org/10.1007/s00259-019-04485-3.
Article
PubMed
Google Scholar
Kubota M. Preparation of high purity praseodymium-143 from neutron irradiated cerium oxide by cation-exchange separation. J Nucl Sci Technol. 1976;13:492–6. https://doi.org/10.1080/18811248.1976.9734062.
Article
CAS
Google Scholar
Kwak C, Hong SK, Seong SK, Ryu JM, Park MS, Lee SE. Effective local control of prostate cancer by intratumoral injection of 166Ho-chitosan complex (DW-166HC) in rats. Eur J Nucl Med Mol Imaging. 2005;32:1400–5. https://doi.org/10.1007/s00259-005-1892-y.
Article
CAS
PubMed
Google Scholar
Lahiri S, Volkers KJ, Wierczinski B. Production of 166Ho through 164Dy(n, γ)165Dy(n, γ)166Dy(β−)166Ho and separation of 166Ho. Appl Radiat Isot. 2004;61:1157–61. https://doi.org/10.1016/j.apradiso.2004.03.117.
Article
CAS
PubMed
Google Scholar
Larsson K, Binnemans K. Separation of rare earths by split-anion extraction. Hydrometallurgy. 2015;156:206–14. https://doi.org/10.1016/j.hydromet.2015.04.020.
Article
CAS
Google Scholar
Larsson K, Binnemans K. Separation of rare earths by solvent extraction with an undiluted nitrate ionic liquid. J Sustain Metall. 2017;3:73–8. https://doi.org/10.1007/s40831-016-0074-4.
Article
Google Scholar
Lassen J, Li R, Raeder S, Zhao X, Dekker T, Heggen H, et al. Current developments with TRIUMF’s titanium-sapphire laser based resonance ionization laser ion source. Hyperfine Interact. 2017;238:33. https://doi.org/10.1007/s10751-017-1407-9.
Article
CAS
Google Scholar
Lattimer JC, Corwin LA, Stapleton J, Volkert WA, Ehrhardt GJ, Ketring AR, et al. Clinical and clinicopathologic response of canine bone tumor patients to treatment with samarium-153-EDTMP. J Nucl Med. 1990;31:1316–25.
CAS
PubMed
Google Scholar
Lebeda O, Lozza V, Schrock P, Štursa J, Zuber K. Excitation functions of proton-induced reactions on natural Nd in the 10–30 MeV energy range, and production of radionuclides relevant for double-β decay. Phys Rev C. 2012;85:014602. https://doi.org/10.1103/PhysRevC.85.014602.
Article
CAS
Google Scholar
Lebeda O, Lozza V, Petzoldt J, Štursa J, Zdychová V, Zuber K. Excitation functions of proton-induced reactions on natural Nd and production of radionuclides relevant for double beta decay: completing measurement in 5–35 MeV energy range. Nucl Phys A. 2014;929:129–42. https://doi.org/10.1016/j.nuclphysa.2014.06.010.
Article
CAS
Google Scholar
Levin VI, Tronova IN, Dmitriev PP, Tikhomirova EA, Gromova NP, Gus’kov AF. Preparation of carrier-free terbium-155. Radiokhimiya. 1977;19:388–93.
CAS
Google Scholar
Levin VI, Malinin AB, Tronova IN. Production of radionuclide by photonuclear reactions. I. Production of terbium-155 and thulium-167 using electron accelerator EA-25. Radiochem Radioanal Lett. 1981;49:111–7.
CAS
Google Scholar
Lewis MR, Zhang J, Jia F, Owen NK, Cutler CS, Embree MF, et al. Biological comparison of 149Pm-, 166Ho-, and 177Lu-DOTA-biotin pretargeted by CC49 scFv-streptavidin fusion protein in xenograft-bearing nude mice. Nucl Med Biol. 2004;31:213–23. https://doi.org/10.1016/j.nucmedbio.2003.08.004.
Article
CAS
PubMed
Google Scholar
Li WP, Smith CJ, Cutler CS, Hoffman TJ, Ketring AR, Jurisson SS. Aminocarboxylate complexes and octreotide complexes with no carrier added 177Lu, 166Ho and 149Pm. Nucl Med Biol. 2003;30:241–51. https://doi.org/10.1016/s0969-8051(02)00418-3.
Article
CAS
PubMed
Google Scholar
Mamtimin M, Harmon F, Starovoitova VN. Sc-47 production from titanium targets using electron linacs. Appl Radiat Isot. 2015;102:1–4. https://doi.org/10.1016/j.apradiso.2015.04.012.
Article
CAS
PubMed
Google Scholar
Mansel A, Franke K. Production of no-carrier-added 135La at an 18 MeV cyclotron and its purification for investigations at a concentration range down to 10–15 mol/L. Radiochim Acta. 2015;103:759–63. https://doi.org/10.1515/ract-2015-2427.
Article
CAS
Google Scholar
Marin JFG, Nunes RF, Coutinho AM, Zaniboni EC, Costa LB, Barbosa FG, et al. Theranostics in nuclear medicine: emerging and re-emerging integrated imaging and therapies in the era of precision oncology. Radiographics. 2020;40:1715–40. https://doi.org/10.1148/rg.2020200021.
Article
Google Scholar
Martin RF, D’Cunha G, Pardee M, Allen BJ. Induction of double-strand breaks following neutron capture by DNA-bound 157Gd. Int J Radiat Biol. 1988;54:205–8. https://doi.org/10.1080/09553008814551641.
Article
CAS
PubMed
Google Scholar
Mikolajczak R, Huclier-Markai S, Alliot C, Haddad F, Szikra D, Forgacs V, et al. Production of scandium radionuclides for theranostic applications: towards standardization of quality requirements. EJNMMI Radiopharmacy and Chemistry. 2021;6:19. https://doi.org/10.1186/s41181-021-00131-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Minegishi K, Nagatsu K, Fukada M, Suzuki H, Ohya T, Zhang M-R. Production of scandium-43 and -47 from a powdery calcium oxide target via the nat/44Ca(α, x)-channel. Appl Radiat Isot. 2016;116:8–12. https://doi.org/10.1016/j.apradiso.2016.07.017.
Article
CAS
PubMed
Google Scholar
Mishiro K, Hanaoka H, Yamaguchi A, Ogawa K. Radiotheranostics with radiolanthanides: design, development strategies, and medical applications. Coord Chem Rev. 2019;383:104–31. https://doi.org/10.1016/j.ccr.2018.12.005.
Article
CAS
Google Scholar
Misiak R, Walczak R, Wąs B, Bartyzel M, Mietelski JW, Bilewicz A. 47Sc production development by cyclotron irradiation of 48Ca. J Radioanal Nucl Chem. 2017;313:429–34. https://doi.org/10.1007/s10967-017-5321-z.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moeller T, Martin DF, Thompson LC, Ferrús R, Feistel GR, Randall WJ. The coordination chemistry of yttrium and the rare earth metal ions. Chem Rev. 1965;65:1–50. https://doi.org/10.1021/cr60233a001.
Article
CAS
Google Scholar
Mohsin H, Jia F, Sivaguru G, Hudson MJ, Shelton TD, Hoffman TJ, et al. Radiolanthanide-labeled monoclonal antibody CC49 for radioimmunotherapy of cancer: biological comparison of DOTA conjugates and 149Pm, 166Ho, and 177Lu. Bioconjug Chem. 2006;17:485–92. https://doi.org/10.1021/bc0502356.
Article
CAS
PubMed
Google Scholar
Mohsin H, Jia F, Bryan JN, Sivaguru G, Cutler CS, Ketring AR, et al. Comparison of pretargeted and conventional CC49 radioimmunotherapy using 149Pm, 166Ho, and 177Lu. Bioconjug Chem. 2011;22:2444–52. https://doi.org/10.1021/bc200258x.
Article
CAS
PubMed
Google Scholar
Moiseeva AN, Aliev RA, Unezhev VN, Zagryadskiy VA, Latushkin ST, Aksenov NV, et al. Cross section measurements of 151Eu(3He,5n) reaction: new opportunities for medical alpha emitter 149Tb production. Sci Rep. 2020;10:508. https://doi.org/10.1038/s41598-020-57436-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Monroy-Guzman F, Jaime SE. Separation of micro-macrocomponent systems:149Pm – Nd, 161Tb-Gd,166Ho-Dy and177Lu-Yb by extraction chromatography. J Mex Chem Soc. 2015a;59:143–50.
CAS
Google Scholar
Monroy-Guzman F, Jaime SE. Separation of micro-macrocomponent systems: 149Pm-Nd, 161Tb-Gd, 166Ho-Dy and 177Lu-Yb by extraction chromatography. J Mex Chem Soc. 2015b;59:143–50.
CAS
Google Scholar
Monroy-Guzman F, Barreiro F, Salinas E, Trevino A. Radiolanthanides device production. World J Nucl Sci Technol. 2015;5:111–9. https://doi.org/10.4236/wjnst.2015.52011.
Article
Google Scholar
Montaño CJ, de Campos TPR. Radioactive cement OF PMMA AND HAP-Sm-153, Ho-166, OR RE-188 for bone metastasis treatment. Acta Ortop Bras. 2019;27:64–8. https://doi.org/10.1590/1413-785220192701190288.
Article
PubMed
PubMed Central
Google Scholar
Morris MJ, Pandit-Taskar N, Carrasquillo J, Divgi CR, Slovin S, Kelly WK, et al. Phase I study of samarium-153 lexidronam with docetaxel in castration-resistant metastatic prostate cancer. J Clin Oncol. 2009;27:2436–42. https://doi.org/10.1200/JCO.2008.20.4164.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mughabghab SF. Chapter 1 - thermal cross sections. In: Mughabghab SF, editor. Atlas of neutron resonances. 6th ed. Amsterdam: Elsevier; 2018. p. 1–19.
Google Scholar
Müller C, Zhernosekov K, Köster U, Johnston K, Dorrer H, Hohn A, et al. A unique matched quadruplet of terbium radioisotopes for PET and SPECT and for#±- and Ô -radionuclide therapy: an in vivo proof-of-concept study with a new receptor-targeted folate derivative. J Nucl Med. 2012;53:1951–9.
Article
PubMed
Google Scholar
Müller C, Bunka M, Reber J, Fischer C, Zhernosekov K, Türler A, et al. Promises of cyclotron-produced 44Sc as a diagnostic match for trivalent β—emitters: in vitro and in vivo study of a 44Sc-DOTA-folate conjugate. J Nucl Med. 2013;54:2168–74. https://doi.org/10.2967/jnumed.113.123810.
Article
CAS
PubMed
Google Scholar
Müller C, Bunka M, Haller S, Köster U, Groehn V, Bernhardt P, et al. Promising prospects for 44Sc-47Sc-based theragnostics: application of 47Sc for radionuclide tumor therapy in mice. J Nucl Med. 2014a;55:1658–64. https://doi.org/10.2967/jnumed.114.141614.
Article
CAS
PubMed
Google Scholar
Müller C, Reber J, Haller S, Dorrer H, Köster U, Johnston K, et al. Folate receptor targeted alpha-therapy using terbium-149. Pharmaceuticals. 2014b;7:353–65.
Article
PubMed
PubMed Central
Google Scholar
Müller C, Fischer E, Behe M, Köster U, Dorrer H, Reber J, et al. Future prospects for SPECT imaging using the radiolanthanide terbium-155 — production and preclinical evaluation in tumor-bearing mice. Nucl Med Biol. 2014c;41:e58–65. https://doi.org/10.1016/j.nucmedbio.2013.11.002.
Article
CAS
PubMed
Google Scholar
Müller C, Vermeulen C, Köster U, Johnston K, Türler A, Schibli R, et al. Alpha-PET with terbium-149: evidence and perspectives for radiotheragnostics. EJNMMI Radiopharm Chem. 2016;1:5. https://doi.org/10.1186/s41181-016-0008-2.
Article
PubMed
PubMed Central
Google Scholar
Naskar N, Lahiri S. Theranostic terbium radioisotopes: challenges in production for clinical application. Front Med. 2021. https://doi.org/10.3389/fmed.2021.675014.
Article
Google Scholar
Navalkissoor S, Grossman A. Targeted alpha particle therapy for neuroendocrine tumours: the next generation of peptide receptor radionuclide therapy. Neuroendocrinology. 2019;108:256–64. https://doi.org/10.1159/000494760.
Article
CAS
PubMed
Google Scholar
Nelson BJB, Wilson J, Andersson JD, Wuest F. High yield cyclotron production of a novel 133/135La theranostic pair for nuclear medicine. Sci Rep. 2020;10:22203. https://doi.org/10.1038/s41598-020-79198-x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Neves M, Kling A, Lambrecht RM. Radionuclide production for therapeutic radiopharmaceuticals. Appl Radiat Isot. 2002;57:657–64. https://doi.org/10.1016/S0969-8043(02)00180-X.
Article
CAS
PubMed
Google Scholar
Nieschmidt EB, Potnis VR, Ellsworth LD, Mandeville CE. Nuclear states of 149Pm. Nucl Phys. 1965;72:236–40. https://doi.org/10.1016/0029-5582(65)90642-5.
Article
CAS
Google Scholar
Nikjoo H, Martin RF, Charlton DE, Terrissol M, Kandaiya S, Lobachevsky P. Modelling of Auger-induced Dna damage by incorporated125i. Acta Oncol. 1996;35:849–56. https://doi.org/10.3109/02841869609104036.
Article
CAS
PubMed
Google Scholar
Notni J, Wester H-J. Re-thinking the role of radiometal isotopes: towards a future concept for theranostic radiopharmaceuticals. J Labelled Compd Radiopharm. 2018;61:141–53. https://doi.org/10.1002/jlcr.3582.
Article
CAS
Google Scholar
Peacock AFA. De Novo Designed imaging agents based on lanthanide peptides complexes. In: Peptide, protein and enzyme design. Elsevier; 2016. p. 557–80. https://doi.org/10.1016/bs.mie.2016.05.051.
Chapter
Google Scholar
Peppard DF, Mason GW, Moline SW. The use of dioctyl phosphoric acid extraction in the isolation of carrier-free 90Y, 140La, 144Ce, 143Pr, and 144Pr. J Inorg Nucl Chem. 1957;5:141–6. https://doi.org/10.1016/0022-1902(57)80055-4.
Article
CAS
Google Scholar
Peppard DF, Horwitz EP, Mason GW. Comparative liquid-liquid extraction behaviour of europium (II) and europium (III). J Inorg Nucl Chem. 1962;24:429–39. https://doi.org/10.1016/0022-1902(62)80039-6.
Article
CAS
Google Scholar
Pillai M. Metallic radionuclides and therapeutic radiopharmaceuticals. Poland: Institute of Nuclear Chemistry and Technology Warszawa; 2010. p. 50–86.
Google Scholar
Polyak A, Das T, Chakraborty S, Kiraly R, Dabasi G, Joba RP, et al. Thulium-170-labeled microparticles for local radiotherapy: preliminary studies. Cancer Biother Radiopharm. 2014;29:330–8. https://doi.org/10.1089/cbr.2014.1680.
Article
CAS
PubMed
Google Scholar
IAEA. Production, quality control and clinical applications of radiosynovectomy agents: IAEA; 2021.
Pruszyński M, Loktionova NS, Filosofov DV, Rösch F. Post-elution processing of (44)Ti/(44)Sc generator-derived (44)Sc for clinical application. Appl Radiat Isot. 2010;68:1636–41. https://doi.org/10.1016/j.apradiso.2010.04.003.
Article
CAS
PubMed
Google Scholar
Qaim SM, Scholten B, Neumaier B. New developments in the production of theranostic pairs of radionuclides. J Radioanal Nucl Chem. 2018;318:1493–509. https://doi.org/10.1007/s10967-018-6238-x.
Article
CAS
Google Scholar
Quadramet®. Quadramet® prescribing information. 2017:1–12.
Ramachandran K, Begum B. Comparison of Tc-99m MDP and Sm-153 EDTMP bone scan. Indian J Nucl Med. 2011;26:163–4. https://doi.org/10.4103/0972-3919.104005.
Article
PubMed
PubMed Central
Google Scholar
Ramamoorthy N, Saraswathy P, Das MK, Mehra KS, Ananthakrishnan M. Production logistics and radionuclidic purity aspects of Sm for radionuclide therapy. Nucl Med Commun. 2002;23:83–9. https://doi.org/10.1097/00006231-200201000-00013.
Article
CAS
PubMed
Google Scholar
Ramogida CF, Orvig C. Tumour targeting with radiometals for diagnosis and therapy. Chem Commun. 2013;49:4720–39. https://doi.org/10.1039/C3CC41554F.
Article
CAS
Google Scholar
Rane S, Harris JT, Starovoitova VN. 47Ca production for 47Ca/47Sc generator system using electron linacs. Appl Radiat Isot. 2015;97:188–92. https://doi.org/10.1016/j.apradiso.2014.12.020.
Article
CAS
PubMed
Google Scholar
Rizvi ASM, Sarkar S, Goozee G, Allen BJ. Radioimmunoconjugates for targeted α therapy of malignant melanoma. Melanoma Res. 2000;10:281–9.
Article
CAS
Google Scholar
Robertson AG, Rendina LM. Gadolinium theranostics for the diagnosis and treatment of cancer. Chem Soc Rev. 2021;50:4231–44. https://doi.org/10.1039/D0CS01075H.
Article
CAS
PubMed
Google Scholar
Roesch F. Scandium-44: benefits of a long-lived PET radionuclide available from the 44Ti/44Sc generator system. Curr Radiopharm. 2012;5:187–201. https://doi.org/10.2174/1874471011205030187.
Article
CAS
PubMed
Google Scholar
Rösch F, Baum RP. Generator-based PET radiopharmaceuticals for molecular imaging of tumours: on the way to THERANOSTICS. Dalton Trans. 2011;40:6104–11. https://doi.org/10.1039/C0DT01504K.
Article
PubMed
Google Scholar
Rotsch DA, Brown MA, Nolen JA, Brossard T, Henning WF, Chemerisov SD, et al. Electron linear accelerator production and purification of scandium-47 from titanium dioxide targets. Appl Radiat Isot. 2018;131:77–82. https://doi.org/10.1016/j.apradiso.2017.11.007.
Article
CAS
PubMed
Google Scholar
Sadeghi M, Enferadi M, Tenreiro C. Nuclear model calculations on the production of Auger emitter 165 Er for targeted radionuclide therapy. J Mod Phys. 2010;1:217–25. https://doi.org/10.4236/jmp.2010.14033.
Article
CAS
Google Scholar
Sahiralamkhan M, Chakravarty R, Chakraborty S, Kamaleshwaran KK, Shinto A, Dash A. Irradiation parameters play a crucial role in the (n, γ) production of 170Tm suitable for clinical use in bone pain palliation. J Radioanal Nucl Chem. 2016;307:1105–13. https://doi.org/10.1007/s10967-015-4323-y.
Article
CAS
Google Scholar
Sarkar S, Allen B, Imam S, Goozee G, Leigh J, Meriaty H. Production and separation of terbium-149,152 for targeted cancer therapy. In: Proceedings of second international conference on isotopes, Sydney; 1999.
Sartor O, Reid RH, Hoskin PJ, Quick DP, Ell PJ, Coleman RE, et al. Samarium-153-Lexidronam complex for treatment of painful bone metastases in hormone-refractory prostate cancer. Urology. 2004;63:940–5. https://doi.org/10.1016/j.urology.2004.01.034.
Article
PubMed
Google Scholar
Schima FJ. Decay of 89Sr and the emission probability of the 909.12keV gamma-ray transition. Appl Radiat Isot. 1998;49(9–11):1359–61. https://doi.org/10.1016/S0969-8043(97)10074-4.
Article
CAS
Google Scholar
Schwantes JM, Sudowe R, Nitsche H, Hoffman DC. Applications of solvent extraction in the high-yield multi-process reduction/separation of Eu from excess Sm. J Radioanal Nucl Chem. 2008;276:543–8. https://doi.org/10.1007/s10967-008-0539-4.
Article
CAS
Google Scholar
Seong SK, Ryu JM, Shin DH, Bae EJ, Shigematsu A, Hatori Y, et al. Biodistribution and excretion of radioactivity after the administration of 166Ho-chitosan complex (DW-166HC) into the prostate of rat. Eur J Nucl Med Mol Imaging. 2005;32:910–7. https://doi.org/10.1007/s00259-005-1792-1.
Article
CAS
PubMed
Google Scholar
Serafini AN, Houston SJ, Resche I, Quick DP, Grund FM, Ell PJ, et al. Palliation of pain associated with metastatic bone cancer using samarium-153 lexidronam: a double-blind placebo-controlled clinical trial. J Clin Oncol. 1998;16:1574–81. https://doi.org/10.1200/JCO.1998.16.4.1574.
Article
CAS
PubMed
Google Scholar
Severin GW, Engle JW, Valdovinos HF, Barnhart TE, Nickles RJ. Cyclotron produced 44gSc from natural calcium. Appl Radiat Isot. 2012;70:1526–30. https://doi.org/10.1016/j.apradiso.2012.04.030.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shi Y, Johnsen AM, Di Pasqua AJ. Holmium for use in cancer therapy. Comments Inorg Chem. 2017;37:281–300. https://doi.org/10.1080/02603594.2017.1333498.
Article
CAS
Google Scholar
Shirmardi SP, Saniei E, Das T, Noorvand M, Erfani M, Bagheri R. Internal dosimetry studies of 170Tm-EDTMP complex, as a bone pain palliation agent, in human tissues based on animal data. Appl Radiat Isot. 2020;166:109396. https://doi.org/10.1016/j.apradiso.2020.109396.
Article
CAS
PubMed
Google Scholar
Shirvani-Arani S, Bahrami-Samani A, Meftahi M, Jalilian AR, Ghannadi-Maragheh M. Production, quality control and biodistribution studies of thulium-170-labeled ethylenediamine (tetramethylene phosphonic acid). Radiochim Acta. 2013;101:37–44. https://doi.org/10.1524/ract.2013.1999.
Article
CAS
Google Scholar
Silberstein EB. Teletherapy and radiopharmaceutical therapy of painful bone metastases. Semin Nucl Med. 2005;35:152–8. https://doi.org/10.1053/j.semnuclmed.2004.11.006.
Article
PubMed
Google Scholar
Skelton WPT, Dibenedetto SW, Pang SS, Pan K, Barish JL, Nwosu-Iheme A, et al. A single-center retrospective analysis of the effect of radium-223 (Xofigo) on pancytopenia in patients with metastatic castration-resistant prostate cancer. Cureus. 2020;12:e6806-e. https://doi.org/10.7759/cureus.6806.
Article
Google Scholar
Snow MS, Foley A, Ward JL, Kinlaw MT, Stoner J, Carney KP. High purity 47Sc production using high-energy photons and natural vanadium targets. Appl Radiat Isot. 2021;178:109934. https://doi.org/10.1016/j.apradiso.2021.109934.
Article
CAS
PubMed
Google Scholar
Srivastava SC. Paving the Way to personalized medicine: production of some promising theragnostic radionuclides at Brookhaven national laboratory. Semin Nucl Med. 2012;42:151–63. https://doi.org/10.1053/j.semnuclmed.2011.12.004.
Article
PubMed
Google Scholar
Staanum PF, Frellsen AF, Olesen ML, Iversen P, Arveschoug AK. Practical kidney dosimetry in peptide receptor radionuclide therapy using [177Lu]Lu-DOTATOC and [177Lu]Lu-DOTATATE with focus on uncertainty estimates. EJNMMI Phys. 2021;8:78. https://doi.org/10.1186/s40658-021-00422-2.
Article
PubMed
PubMed Central