Anderson CJ, Ferdani R. Copper-64 radiopharmaceuticals for PET imaging of cancer: advances in preclinical and clinical research. Cancer Biother Radiopharm. 2009;24(4):379–93. doi:10.1089/cbr.2009.0674.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bass LA, Wang M, Welch MJ, Anderson CJ. In vivo transchelation of copper-64 from TETA-octreotide to superoxide dismutase in rat liver. Bioconjug Chem. 2000;11(4):527–32.
Article
CAS
PubMed
Google Scholar
Bevilacqua A, Gelb RI, Hebard WB, Zompa LJ. Equilibrium and thermodynamic study of the aqueous complexation of 1,4,7-triazacyclononane-N,N',N”-triacetic acid with protons, alkaline-earth-metal cations, and copper(Ii). Inorg Chem. 1987;26(16):2699–706. doi:10.1021/ic00263a029.
Article
CAS
Google Scholar
Blower PJ, Lewis JS, Zweit J. Copper radionuclides and radiopharmaceuticals in nuclear medicine. Nucl Med Biol. 1996;23(8):957–80.
Article
CAS
PubMed
Google Scholar
Boswell CA, Sun X, Niu W, Weisman GR, Wong EH, Rheingold AL, et al. Comparative in vivo stability of copper-64-labeled cross-bridged and conventional tetraazamacrocyclic complexes. J Med Chem. 2004;47(6):1465–74. doi:10.1021/jm030383m.
Article
CAS
PubMed
Google Scholar
Burger JA, Kipps TJ. CXCR4: a key receptor in the crosstalk between tumor cells and their microenvironment. Blood. 2006;107. doi:10.1182/blood-2005-08-3182.
Burger JA, Peled A. CXCR4 antagonists: targeting the microenvironment in leukemia and other cancers. Leukemia. 2009;23(1):43–52. doi:10.1038/Leu.2008.299.
Article
CAS
PubMed
Google Scholar
Cai Z, Anderson CJ. Chelators for copper radionuclides in positron emission tomography radiopharmaceuticals. J labelled compd radiopharm. 2014;57(4):224–30. doi:10.1002/jlcr.3165.
Article
CAS
Google Scholar
Chatterjee S, Azad BB, Nimmagadda S. The intricate role of CXCR4 in cancer. Adv Cancer Res. 2014;124:31–82. doi:10.1016/B978-0-12-411638-2.00002-1.
Article
PubMed
PubMed Central
Google Scholar
De Silva RA, Peyre K, Pullambhatla M, Fox JJ, Pomper MG, Nimmagadda S. Imaging CXCR4 expression in human cancer xenografts: evaluation of monocyclam 64Cu-AMD3465. J Nucl Med. 2011;52(6):986–93. doi:10.2967/jnumed.110.085613.
Article
PubMed
PubMed Central
Google Scholar
Dearling JLJ, Voss SD, Dunning P, Snay E, Fahey F, Smith SV, et al. Imaging cancer using PET — the effect of the bifunctional chelator on the biodistribution of a 64Cu-labeled antibody. Nucl Med Biol. 2011;38(1):29–38. https://www.ncbi.nlm.nih.gov/pubmed/21220127.
Article
CAS
PubMed
PubMed Central
Google Scholar
Debnath B, Xu S, Grande F, Garofalo A, Neamati N. Small molecule inhibitors of CXCR4. Theranostics. 2013;3(1):47–75. doi:10.7150/thno.5376.
Article
CAS
PubMed
PubMed Central
Google Scholar
Demmer O, Gourni E, Schumacher U, Kessler H, Wester HJ. PET imaging of CXCR4 receptors in cancer by a New optimized ligand. Chemmedchem. 2011a;6(10):1789–91. doi:10.1002/Cmdc.201100320.
Article
CAS
PubMed
PubMed Central
Google Scholar
Demmer O, Dijkgraaf I, Schumacher U, Marinelli L, Cosconati S, Gourni E, et al. Design, synthesis, and functionalization of dimeric peptides targeting Chemokine receptor CXCR4. J Med Chem. 2011b;54(21):7648–62. doi:10.1021/Jm2009716.
Article
CAS
PubMed
Google Scholar
Domanska UM, Kruizinga RC, Nagengast WB, Timmer-Bosscha H, Huls G, de Vries EGE, et al. A review on CXCR4/CXCL12 axis in oncology: No place to hide. Eur J Cancer. 2013;49(1):219–30. doi:10.1016/J.Ejca.2012.05.005.
Article
CAS
PubMed
Google Scholar
George GP, Pisaneschi F, Nguyen QD, Aboagye EO. Positron emission tomographic imaging of CXCR4 in cancer: challenges and promises. Mol Imaging. 2014;13:1–19.
Google Scholar
Gourni E, Demmer O, Schottelius M, D’Alessandria C, Schulz S, Dijkgraaf I, et al. PET of CXCR4 expression by a (68)Ga-labeled highly specific targeted contrast agent. J Nucl Med. 2011;52(11):1803–10. doi:10.2967/jnumed.111.098798.
Article
CAS
PubMed
Google Scholar
Hanaoka H, Mukai T, Tamamura H, Mori T, Ishino S, Ogawa K, et al. Development of a 111In-labeled peptide derivative targeting a chemokine receptor, CXCR4, for imaging tumors. Nucl Med Biol. 2006;33(4):489–94. doi:10.1016/j.nucmedbio.2006.01.006.
Article
CAS
PubMed
Google Scholar
Hartimath SV, van Waarde A, Dierckx RA, de Vries EF. Evaluation of N-[(11)C]methyl-AMD3465 as a PET tracer for imaging of CXCR4 receptor expression in a C6 glioma tumor model. Mol Pharm. 2014;11(11):3810–7. doi:10.1021/mp500398r.
Article
CAS
PubMed
Google Scholar
Hattermann K, Mentlein R. An infernal trio: the Chemokine CXCL12 and its receptors CXCR4 and CXCR7 in tumor biology. Annals of anatomy. Anat Anz. 2013;195(2):103–10. doi:10.1016/j.aanat.2012.10.013.
Article
CAS
Google Scholar
Herhaus P, Habringer S, Philipp-Abbrederis K, Vag T, Gerngross C, Schottelius M, et al. Targeted positron emission tomography imaging of CXCR4 expression in patients with acute myeloid leukemia. Haematologica. 2016;101(8):932–40. doi:10.3324/haematol.2016.142976.
Article
PubMed
PubMed Central
Google Scholar
Herrmann K, Lapa C, Wester HJ, Schottelius M, Schiepers C, Eberlein U, et al. Biodistribution and radiation dosimetry for the chemokine receptor CXCR4-targeting probe 68Ga-pentixafor. J Nucl Med. 2015;56(3):410–6. doi:10.2967/jnumed.114.151647.
Article
CAS
PubMed
Google Scholar
Herrmann K, Schottelius M, Lapa C, Osl T, Poschenrieder A, Hanscheid H, et al. First-in-human experience of CXCR4-directed endoradiotherapy with Lu-177- and Y-90-labeled pentixather in advanced-stage multiple myeloma with extensive intra- and extramedullary disease. J Nucl Med. 2016;57(2):248–51. doi:10.2967/jnumed.115.167361.
Article
CAS
PubMed
Google Scholar
Jacobson O, Weiss ID, Szajek L, Farber JM, Kiesewetter DO. 64Cu-AMD3100--a novel imaging agent for targeting chemokine receptor CXCR4. Bioorg Med Chem. 2009;17(4):1486–93. doi:10.1016/j.bmc.2009.01.014.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jacobson O, Weiss ID, Kiesewetter DO, Farber JM, Chen XY. PET of tumor CXCR4 expression with 4-F-18-T140. J Nucl Med. 2010;51(11)):1796–804. doi:10.2967/jnumed.110.079418.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jacobson O, Weiss ID, Szajek LP, Niu G, Ma Y, Kiesewetter DO, et al. PET imaging of CXCR4 using copper-64 labeled peptide antagonist. Theranostics. 2011;1:251–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jacobson O, Weiss ID, Szajek LP, Niu G, Ma Y, Kiesewetter DO, et al. Improvement of CXCR4 tracer specificity for PET imaging. J Control Release. 2012;157(2):216–23. doi:10.1016/j.jconrel.2011.09.076.
Article
CAS
PubMed
Google Scholar
Jones-Wilson TM, Deal KA, Anderson CJ, McCarthy DW, Kovacs Z, Motekaitis RJ, et al. The in vivo behavior of copper-64-labeled azamacrocyclic complexes. Nucl Med Biol. 1998;25((6):523–30. https://www.ncbi.nlm.nih.gov/pubmed/9751418.
Article
CAS
PubMed
Google Scholar
Kuil J, Buckle T, van Leeuwen FWB. Imaging agents for the chemokine receptor 4 (CXCR4). Chem Soc Rev. 2012a;41(15):5239–61. doi:10.1039/C2cs35085h.
Article
CAS
PubMed
Google Scholar
Kuil J, Buckle T, van Leeuwen FW. Imaging agents for the chemokine receptor 4 (CXCR4). Chem Soc Rev. 2012b;41(15):5239–61. doi:10.1039/c2cs35085h.
Article
CAS
PubMed
Google Scholar
Kukis DL, Diril H, Greiner DP, Denardo SJ, Denardo GL, Salako QA, et al. A comparative study of copper-67 radiolabeling and kinetic stabilities of antibody-macrocycle chelate conjugates. Cancer. 1994;73(S3):779–86. doi:10.1002/1097-0142(19940201)73:3+<779::AID-CNCR2820731306>3.0.CO;2-3.
Article
CAS
PubMed
Google Scholar
Lapa C, Lückerath K, Kleinlein I, Monoranu CM, Linsenmann T, Kessler AF, et al. 68Ga-pentixafor-PET/CT for imaging of Chemokine receptor 4 expression in glioblastoma. Theranostics. 2016a;6((3):428–34. doi:10.7150/thno.13986.
Article
Google Scholar
Lapa C, Luckerath K, Rudelius M, Schmid JS, Schoene A, Schirbel A et al. [68Ga]Pentixafor-PET/CT for imaging of chemokine receptor 4 expression in small cell lung cancer - initial experience. Oncotarget. 2016. doi:10.18632/oncotarget.7063.
McArdle HJ, Bingham MJ, Summer K, Ong TJ. Cu metabolism in the liver. In: Leone A, Mercer JFB, editors. Copper transport and its disorders: molecular and cellular aspects. Boston: Springer US; 1999. p. 29–37.
Chapter
Google Scholar
Mirick GR, O’Donnell RT, DeNardo SJ, Shen S, Meares CF, DeNardo GL. Transfer of copper from a chelated 67Cu-antibody conjugate to ceruloplasmin in lymphoma patients. Nucl Med Biol. 1999;26(7):841–5.
Article
CAS
PubMed
Google Scholar
Musci G, Polticelli F, Calabrese L. Structure/function relationships in ceruloplasmin. In: Leone A, Mercer JFB, editors. Copper transport and its disorders: molecular and cellular aspects. Boston: Springer US; 1999. p. 175–82.
Chapter
Google Scholar
Nimmagadda S, Pullambhatla M, Stone K, Green G, Bhujwalla ZM, Pomper MG. Molecular imaging of CXCR4 receptor expression in human cancer xenografts with [64Cu]AMD3100 positron emission tomography. Cancer Res. 2010;70(10):3935–44. doi:10.1158/0008-5472.CAN-09-4396.
Article
CAS
PubMed
PubMed Central
Google Scholar
Oltmanns D, Zitzmann-Kolbe S, Mueller A, Bauder-Wuest U, Schaefer M, Eder M, et al. Zn(II)-bis(cyclen) complexes and the imaging of apoptosis/necrosis. Bioconjug Chem. 2011;22(12):2611–24. doi:10.1021/bc200457b.
Article
CAS
PubMed
Google Scholar
Philipp-Abbrederis K, Herrmann K, Knop S, Schottelius M, Eiber M, Luckerath K, et al. In vivo molecular imaging of chemokine receptor CXCR4 expression in patients with advanced multiple myeloma. EMBO mol med. 2015;7(4):477–87. doi:10.15252/emmm.201404698.
Article
CAS
PubMed
PubMed Central
Google Scholar
Poschenrieder A, Osl T, Schottelius M, Hoffmann F, Wirtz M, Schwaiger M, et al. First 18F-labeled pentixafor-based imaging agent for PET imaging of CXCR4 expression in vivo. Tomogr. 2016a;2(2):85–93. doi:10.18383/j.tom.2016.00130.
Article
Google Scholar
Poschenrieder A, Schottelius M, Schwaiger M, Kessler H, Wester H-J. The influence of different metal-chelate conjugates of pentixafor on the CXCR4 affinity. EJNMMI Res. 2016b;6(1):1–8. doi:10.1186/s13550-016-0193-8.
Article
Google Scholar
Poty S, Gourni E, Desogere P, Boschetti F, Goze C, Maecke HR, et al. AMD3100: a versatile platform for CXCR4 targeting (68)Ga-based radiopharmaceuticals. Bioconjug Chem. 2016;27(3):752–61. doi:10.1021/acs.bioconjchem.5b00689.
Article
CAS
PubMed
Google Scholar
Prasanphanich AF, Nanda PK, Rold TL, Ma L, Lewis MR, Garrison JC, et al. [64Cu-NOTA-8-Aoc-BBN(7-14)NH2] targeting vector for positron-emission tomography imaging of gastrin-releasing peptide receptor-expressing tissues. Proc Natl Acad Sci U S A. 2007;104(30):12462–7. doi:10.1073/pnas.0705347104.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schottelius M, Osl T, Poschenrieder A, Herrmann K, Lapa C, Hoffmann F, et al. [177]Lu-pentixather: preclinical and first patient results with a highly promising CXCR4-directed endoradiotherapeutic agent. J Nucl Med. 2015;56(supplement 3):339.
Google Scholar
Tamamura H, Xu Y, Hattori T, Zhang X, Arakaki R, Kanbara K, et al. A low-molecular-weight inhibitor against the chemokine receptor CXCR4: a strong anti-HIV peptide T140. Biochem Biophys Res Commun. 1998;253(3):877–82. doi:10.1006/bbrc.1998.9871.
Article
CAS
PubMed
Google Scholar
Tamamura H, Hori A, Kanzaki N, Hiramatsu K, Mizumoto M, Nakashima H, et al. T140 analogs as CXCR4 antagonists identified as anti-metastatic agents in the treatment of breast cancer. FEBS Lett. 2003;550(1-3):79–83.
Article
CAS
PubMed
Google Scholar
Tanaka T, Nomura W, Narumi T, Masuda A, Tamamura H. Bivalent ligands of CXCR4 with rigid linkers for elucidation of the dimerization state in cells. J Am Chem Soc. 2010;132(45):15899–901. doi:10.1021/ja107447w.
Article
CAS
PubMed
Google Scholar
Tegoni M, Valensin D, Toso L, Remelli M. Copper chelators: chemical properties and bio-medical applications. Curr Med Chem. 2014;21(33):3785–818.
Article
CAS
PubMed
Google Scholar
Terao T, Owen CA. Nature of copper compounds in liver supernate and bile of rats: studies with 67 Cu. Am J Physiol. 1973;224(3):682–6. Legacy Content.
CAS
PubMed
Google Scholar
Vag T, Gerngross C, Herhaus P, Eiber M, Philipp-Abbrederis K, Graner FP et al. First Experience on Chemokine Receptor CXCR4 Targeted Positron Emission Tomography (PET) Imaging in Patients with Solid Cancers. J Nucl Med. 2016. doi:10.2967/jnumed.115.161034.
Valentine JS, Hart PJ, Gralla EB. Copper-zinc superoxide dismutase and ALS. In: Leone A, Mercer JFB, editors. Copper transport and its disorders: molecular and cellular aspects. Boston: Springer US; 1999. p. 193–203.
Chapter
Google Scholar
Wadas TJ, Wong EH, Weisman GR, Anderson CJ. Copper chelation chemistry and its role in copper radiopharmaceuticals. Curr Pharm Des. 2007;13(1):3–16.
Article
CAS
PubMed
Google Scholar
Wadas TJ, Wong EH, Weisman GR, Anderson CJ. Coordinating radiometals of copper, gallium, indium, yttrium, and zirconium for PET and SPECT imaging of disease. Chem Rev. 2010;110(5):2858–902. doi:10.1021/Cr900325h.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weineisen M, Simecek J, Schottelius M, Schwaiger M, Wester HJ. Synthesis and preclinical evaluation of DOTAGAconjugated PSMA ligands for functional imaging and endoradiotherapy of prostate cancer. EJNMMI Res. 2014;4(63):1–15.
CAS
Google Scholar
Weiss ID, Jacobson O. Molecular imaging of chemokine receptor CXCR4. Theranostics. 2013;3(1):76–84. doi:10.7150/thno.4835.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weiss ID, Jacobson O, Kiesewetter DO, Jacobus JP, Szajek LP, Chen X, et al. Positron emission tomography imaging of tumors expressing the human chemokine receptor CXCR4 in mice with the use of 64Cu-AMD3100. Mol Imaging Biol. 2012;14(1):106–14. doi:10.1007/s11307-010-0466-y.
Article
PubMed
Google Scholar
Wester HJ, Keller U, Schottelius M, Beer A, Philipp-Abbrederis K, Hoffmann F, et al. Disclosing the CXCR4 expression in lymphoproliferative diseases by targeted molecular imaging. Theranostics. 2015;5(6):618–30. doi:10.7150/thno.11251.
Article
CAS
PubMed
PubMed Central
Google Scholar
Williams HA, Robinson S, Julyan P, Zweit J, Hastings D. A comparison of PET imaging characteristics of various copper radioisotopes. Eur J Nucl Med Mol I. 2005;32(12):1473–80. doi:10.1007/s00259-005-1906-9.
Article
Google Scholar
Woodard LE, De Silva RA, Behnam Azad B, Lisok A, Pullambhatla M, GL W, et al. Bridged cyclams as imaging agents for chemokine receptor 4 (CXCR4). Nucl Med Biol. 2014;41(7):552–61. doi:10.1016/j.nucmedbio.2014.04.081.
Article
PubMed
PubMed Central
Google Scholar
Wu N, Kang CS, Sin I, Ren S, Liu D, Ruthengael VC, et al. Promising bifunctional chelators for copper 64-PET imaging: practical (64)Cu radiolabeling and high in vitro and in vivo complex stability. J biol inorg chem. 2016;21(2):177–84. doi:10.1007/s00775-015-1318-7.
Article
CAS
PubMed
Google Scholar
Yan X, Niu G, Wang Z, Yang X, Kiesewetter DO, Jacobson O et al. Al[F]NOTA-T140 Peptide for Noninvasive Visualization of CXCR4 Expression. Mol Imaging Biol. 2015. doi:10.1007/s11307-015-0872-2.
Zarschler K, Kubeil M, Stephan H. Establishment of two complementary in vitro assays for radiocopper complexes achieving reliable and comparable evaluation of in vivo stability. RSC Adv. 2014;4(20):10157–64. doi:10.1039/c3ra47302c.
Article
CAS
Google Scholar