Atack JR, Wafford KA, Tye SJ, et al. TPA023 [7-(1,1-dimethylethyl)-6-(2-ethyl-2H-1,2,4-triazol-3-(2-fluorophenyl)-1,2,4-triazolo[4,3-b]pyridazine], an agonist selective for α2- and α3-containing GABAA receptors, is a non-sedating anxiolytic in rodents and primates. J Pharmacol Exp Ther. 2006;316:410–22.
Article
CAS
PubMed
Google Scholar
Atack JR, Wong DF, Fryer TD, et al. Benzodiazepine binding site occupancy by the novel GABAA receptor subtype-selective drug 7-(1,1-dimethylethyl)-6-(2-ethyl-2H-1,2,4-triazol-3-ylmethoxy)-3-(2-fluorophenyl)-1,2,4-triazolo[4,3-b]pyridazine (TPA023) in rats, primates, and humans. J Pharmacol Exp Ther. 2010;332:17–25.
Article
CAS
PubMed
Google Scholar
Brooks AF, Topczewski JJ, Ichiishi N, Sanford MS, Scott PJH. Late-stage [18F]fluorination: new solutions to old problems. Chem Sci. 2014;5:4545–53.
Article
CAS
PubMed
Google Scholar
Cardinale J, Martin R, Remde Y, et al. Procedures for the GMP-compliant production and quality control of [18F]PSMA-1007: a next generation radiofluorinated tracer for the detection of prostate cancer. Pharmaceuticals. 2017;10:77.
Article
PubMed Central
Google Scholar
Deng X, Rong J, Wang L, et al. Chemistry for positron emission tomography: recent advances in 11C-, 18F-, 13N-, and 15O-labeling reactions. Angew Chem Int Ed. 2019;58:2580–605.
Article
CAS
Google Scholar
Eng W, Atack JR, Sanabria S, et al, Occupancy of human brain GABAA receptors by the α5 subtype-selective benzodiazepine site inverse agonist α5IA as measured using [11C]flumazenil PET imaging. Neuropharmacology. 2010;59635–639
Flumazenil (N-[11C]methyl injection 01/2008:1917, Radiopharmaceutical preparations. In European Pharmacopeia. 9.0; 1137–1139.
Flumazenil, European Pharmacopeia, 10.7; 2655
Gu Z-Q, Wong G, Dominguez S, et al. Synthesis and evaluation of imidazo[1,5-a][1,4]benzodiazepine esters with high affinities and selectivities at “diazepam-insensitive” benzodiazepine receptors. J Med Chem. 1993;36:1001–6.
Article
CAS
PubMed
Google Scholar
Guibbal F, Isenegger PG, Wilson TC, et al. Manual and automated Cu-mediated radiosynthesis of the PARP inhibitor [18F]olaparib. Nat Protoc. 2020;15:1525–41.
Article
CAS
PubMed
Google Scholar
Heiss W-D, Kracht L, Grond M, et al. Early [11C]flumazenil/H2O positron emission tomography predicts irreversible ischemic cortical damage in stroke patients receiving acute thrombolytic therapy. Stroke. 2000;31:366–9.
Article
CAS
PubMed
Google Scholar
Holthoff VA, Koeppe RA, Frey KA, et al. Positron emission tomography measures of benzodiazepine receptors in Huntington’s disease. Ann Neurol. 1993;34:76–81.
Article
CAS
PubMed
Google Scholar
Koepp MJ, Labbé C, Richardson MP. et aal, Regional hippocampal [11C]flumazenil PET in temporal lobe epilepsy with unilateral and bilateral hippocampal sclerosis. Brain. 1997;120:1865–76.
Article
PubMed
Google Scholar
Koziorowski J, Behe M, Decristoforo C, et al. Position paper on requirements for toxicological studies in the specific case of radiopharmaceuticals. EJNMMI Radiopharm Chem. 2017;1:1.
Article
CAS
PubMed
Google Scholar
Kumar P, Nagaraj C, Joshi R, et al. Radiosynthesis of [18F]flumazenil for imaging benzodiazepine receptors and its evaluation in human volunteers using simultaneous PET-MRI. J Radioanal Nucl Chem. 2021;329:581–9.
Article
CAS
Google Scholar
Malizia AL, Cunningham VJ, Bell CJ, Liddle PF, Jones T, Nutt DJ. Decreased brain GABAA-benzodiazepine receptor binding in panic disorder: preliminary results from a quantitative PET study. Arch Gen Psychiatry. 1998;55:715–20.
Article
CAS
PubMed
Google Scholar
Massaweh G, Schirrmacher E. la Fougere, et al, Improved work-up procedure for the production of [18F]flumazenil and first results of its use with a high-resolution research tomograph in human stroke. Nucl Med Biol. 2009;36:721–7.
Article
CAS
PubMed
Google Scholar
Moon BS, Kil HS, Park JH, et al. Facile aromatic fluorination of [18F]flumazenil from diaryliodonium salts with evaluation of their stability and selectivity. Org Biomol Chem. 2011;9:8346–55.
Article
CAS
PubMed
Google Scholar
Moon BS, Park JH, Lee HJ, Lee BC, Kim SE. Routine production of [18F]flumazenil from iodonium tosylate using a sample pretreatment method: a 2.5 year production report. Mol Imaging Biol. 2014;16:619–25.
Article
PubMed
Google Scholar
Mossine AV, Brooks AF, Ichiishi N, et al. Development of customized [18F]fluoride elution techniques for the enhancement of copper-mediated late-stage radiofluorination. Sci Rep. 2017;7:1–9.
Article
CAS
Google Scholar
Mossine AV, Brooks AF, Bernard-Gauthier V, et al. Automated synthesis of PET radiotracers by copper mediated-mediated 18F-fluorination of organoborons: importance of the order of addition and competing protodeborylation. J Labelled Comp Radiopharm. 2018;61:228–36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mossine AV, Tanzey SS, Brooks AF, et al. Synthesis of high-molar-activity [18F]6-fluoro- ʟ-DOPA suitable for human use via Cu-mediated fluorination of a BPin precursor. Nat Protoc. 2020;15:1742–59.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nickolls SA, Gurrell R, van Amerongen G, et al. Pharmacology in translation: the preclinical and early clinical profile of the novel α2/3 functionally selective GABAA receptor positive allosteric modulator PF-06372865. Br J Pharmacol. 2018;175:708–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pappata S, Samson Y, Chavoix C, et al. Regional specific binding of [11C]RO151788 to central type benzodiazepine receptors in human brain: quantitative evaluation by PET. J Cereb Blood Flow Metab. 1988;8:304–13.
Article
CAS
PubMed
Google Scholar
Ph. Eur. Method 2.4.33 Tetrabutylammonium in Radiopharmaceutical Preparations
Preshlock S, Tredwell M, Gouverneur V. 18F-Labelling of arenes and heteroarenes for applications in positron emission tomography. Chem Rev. 2016a;116:719–66.
Article
CAS
PubMed
Google Scholar
Preshlock S, Calderwood S, Verhoog S, et al. Enhanced copper-mediated 18F-fluorination of aryl boronic esters provides eight radiotracers for PET applications. Chem Commun. 2016b;52:8361–4.
Article
CAS
Google Scholar
Ryvlin P, Bouvard S, Le Bars D, et al. Clinical utility of flumazenil-PET versus [18F]fluorodeoxyglucose-PET and MRI in refractory partial epilepsy: a prospective study in 100 patients. Exp Neurol. 2020;330:113305.
Article
Google Scholar
Ryzhikov NN, Seneca N, Krasikova RN, et al. Preparation of highly specific radioactivity [18F]flumazenil and its evaluation in cynomolgus monkey by positron emission tomography. Nucl Med Biol. 2005;32:109–16.
Article
CAS
PubMed
Google Scholar
Savic I, Persson A, Roland P, Pauli S, Sedvall G, Widén L. In-vivo demonstration of reduced benzodiazepine receptor binding in human epileptic foci. Lancet. 1988;2:863–6.
Article
CAS
PubMed
Google Scholar
Schirrmacher R, Massaweh G, Kovacevic M, Wängler C, Thiel A. Synthesis of [18F]flumazenil ([18F]FMZ). In: Scott PJH, Hockley BG, editors. Radiochemical syntheses: radiopharmaceuticals for positron emission tomography. New York: Wiley; 2012. p. 111–24.
Chapter
Google Scholar
Tanzey SS, Mossine AV, Sowa AR, et al. A spot test for determination of residual TBA levels in 18F-radiotracers for human use using Dragendorff reagent. Anal Methods. 2020;12:5004–9.
Article
CAS
PubMed
Google Scholar
Tredwell M, Preshlock S, Taylor NJ, et al. A general copper-mediated nucleophilic 18F fluorination of arenes. Angew Chem Int Ed. 2014;53:7751–5.
Article
CAS
Google Scholar
Vaulina D, Nasirzadeh M, Gomzina N. Automated radiosynthesis and purification of [18F]flumazenil with solid phase extraction. Appl Radiat Isot. 2018;135:110–4.
Article
CAS
PubMed
Google Scholar
Vivash L, Gregoire M-C. Lau Ew, et al, 18F-Flumazenil: a γ-aminobutyric acid A-specific PET radiotracer for the localization of drug-resistant temporal lobe epilepsy. J Nucl Med. 2013;54:1270–7.
Article
CAS
PubMed
Google Scholar
Wright JS, Kaur T, Preshlock S, et al. Copper-mediated late-stage radiofluorination: five years of impact on preclinical and clinical PET imaging. Clin Transl Imaging. 2020;8:167–206.
Article
PubMed
PubMed Central
Google Scholar
Zlatopolskiy BD, Zischler J, Krapf P, et al. Copper-mediated aromatic radiofluorination revisited: efficient production of PET tracers on a preparative scale. Chem Eur J. 2015;21:5972–9.
Article
CAS
PubMed
Google Scholar