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Abstract

Immunotherapy with checkpoint inhibitors demonstrates impressive improvements
in the treatment of several types of cancer. Unfortunately, not all patients respond
to therapy while severe immune-related adverse effects are prevalent. Currently,
patient stratification is based on immunotherapy marker expression through
immunohistochemical analysis on biopsied material. However, expression can be
heterogeneous within and between tumor lesions, amplifying the sampling
limitations of biopsies. Analysis of immunotherapy target expression by non-
invasive quantitative molecular imaging with PET or SPECT may overcome this
issue. In this review, an overview of tracers that have been developed for preclinical
and clinical imaging of key immunotherapy targets, such as programmed cell
death-1, programmed cell death ligand-1, IDO1 and cytotoxic T lymphocyte-
associated antigen-4 is presented. We discuss important aspects to consider when
developing such tracers and outline the future perspectives of molecular imaging
of immunotherapy markers.
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Background
Despite a rapidly expanding therapeutic arsenal and improved understanding of its biol-

ogy, cancer remains one of the major causes of mortality in the western world (Organisa-

tion WH 2011). Recent developments in cancer immunotherapy have shifted focus

towards immune checkpoint inhibitors. Healthy tissues and immune cells can express

cell-surface molecules to regulate the immune response and prevent auto-immune reac-

tions, so called immune-checkpoints. Tumor cells can also (over-)express these check-

point molecules, allowing them to escape immune surveillance (Iwai et al. 2002; Blank

et al. 2005). By specifically modulating the interaction of stimulatory or inhibitory im-

mune checkpoint molecules using monoclonal antibodies (mAb), anti-tumor immune re-

sponses can be reinvigorated and result in enhanced tumor cell recognition and killing

(Zitvogel and Kroemer 2012). As a consequence of its own success, the number of clinical

trials investigating new treatment regimens based on immune checkpoint inhibition (ICI)

is overwhelming (Shalabi et al. 2017). However, due to a considerable group of non-
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responders and immune-related adverse effects associated with these therapies and con-

siderable costs, there is a growing demand for tools that allow the use of immune therapy

in the most effective way, i.e. maximizing the likelihood of response. Therefore, two strat-

egies have been put forward; First, rational design of novel combination treatments with

increased efficacy, and second, improved selection of patients who are most likely to bene-

fit from treatment. Currently, immunohistochemical (IHC) analysis on biopsied material

is the gold standard for patient therapy stratification. However, various studies have dem-

onstrated the limitations of biopsies, namely the various sampling limitations and inva-

siveness of the procedure (Daud et al. 2016). Being non-invasive, sensitive, and

quantitative, positron emission tomography (PET) imaging allows for longitudinal and re-

petitive assessment on a whole body scale of immune checkpoint expression. As such,

PET imaging represents a powerful tool to fulfill these needs in oncology (Fruhwirth et al.

2018). In this review we provide a comprehensive overview of all presently published lit-

erature on radiotracers developed for immune checkpoint imaging (see Table 1).

Imaging the PD-1/PD-L1 axis
Programmed cell death 1 (PD-1 or CD279) is an immune checkpoint molecule present

on T cells and immature B cells; its expression on CD8+ T cells is regulated by binding to

the cognate T cell receptor (see Fig. 1). The continuous interaction between PD-1 and

Programmed death-ligand 1 (PD-L1 or CD274) has been shown to induce and maintain

metabolic exhaustion of lymphocytes (Sharpe and Pauken 2018), while PD-1 blockade re-

invigorates exhausted CD8+ T cells; a concept that boosted further clinical development.

PD-L1, one of the two known ligands for PD-1, protects healthy tissues against self-

recognition by activated T cells. Cancer cells can exploit this immune suppressive mech-

anism to evade immune surveillance (Philips and Atkins 2015). In 2014, the first PD-1 Ab

was approved by the FDA for advanced melanoma, and to date, more than 250 studies are

actively investigating PD-1/PD-L1 based interventions (ClinicalTrials.gov 2019). These

therapies have shown great promise and durable responses are increasingly observed.

However, currently there is not a single biomarker that accurately predicts treatment re-

sponse. PD-L1 status as determined on biopsied tumor tissue is only moderately corre-

lated to treatment outcome and there is a need for more information regarding tumor

status before and during immunotherapy (Shaverdian et al. 2017).

PD-1 imaging

The potential of PD-1 imaging has been demonstrated in several preclinical and clinical

studies. A copper-64 (64Cu) labeled anti-mouse PD-1 Ab was developed by Hettich

et al. (Hettich et al. 2016). Studies in naïve and PD-1−/− mice showed specific uptake in

lymphoid organs (lymph nodes and spleen) of naïve mice, which was significantly lower

in PD-1 knock-out mice at 24 h after injection, confirming the physiological expression

of PD-1 in different immune compartments. In naïve mice with B16-F10 melanoma tu-

mors that received PD-L1 and Cytotoxic T lymphocyte-associated protein 4 (CTLA-4

or CD152) directed ICI therapy, high tracer uptake was observed in the tumor upon ir-

radiation, suggesting that PD-1 PET can be used for ICI treatment monitoring. Natara-

jan et al. injected a 64Cu-labeled anti-mouse PD-1 Ab in Foxp3+ LuciDTR4 mice, a

mouse model that contains high expressing PD-1 Foxp3+ regulatory T cells, bearing
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Table 1 Overview of nuclear imaging tracers for immune checkpoints. Only tracers that have been
published and used in at least preclinical in vivo studies are described in the tables below

Target Name Construct Label Timing Tumor type
/tissue

Therapeutic
use

Reference

Clinicaly used

PD-1 89Zr-Nivolumab IgG 89Zr 144 h NSCLC Yes (Niemeijer
et al. 2018)

PD-L1 89Zr-Nivolumab IgG 89Zr 4 and 7 d Bladder cancer,
NSCLC, or
TNBC

Yes (Bensch
et al. 2018)

PD-L1 18F-B MS-986192 Adnectin 18F Dynamic PET
immediately,
static
acquisition
after 1 h

NSLC No (Niemeijer
et al. 2018)

IDO/
TDO

Alpha-[11C]-
methyll-
tryptophan
([11C]AMT)

Small
molecule

11C Dynamic
scan initiate
during tracer
infusion, to
25 min p.i.

Glioblastoma,
Gliomas,
meningiomas,
NSCLS, breast
carcinomas, 3C
prostate model

Yes (Juhasz et al.
2006, 2009, 2012;
Zitron
et al. 2013;
Michelhaugh
et al. 2017;
Guastella
et al. 2016)

A2aR [11C]Preladenant Small
molecule

11C Dynamic
scan initiate
during tracer
infusion, to
60 min p.i.

Cerebral A2aR
imaging

Yes (Zhou et al.
2017a, 2017b,
2017c, 2017d;
Sakata et al.
2017; Ishibashi
et al. 2018; Zhou
et al. 2014)

A2aR [11C]TMSX Small
molecule

11C Dynamic
scan initiate
during tracer
infusion

Cerebral A2aR
imaging,
Brown Fat

Yes (Rissanen et al.
2013; Mishina
et al. 2007, 2011;
Naganawa et al.
2007, 2014;
Lahesmaa et al.
2018; Rissanen
et al. 2015)

Preclinically used

PD-1 64Cu-anti-
mouse- PD-1

IgG 64Cu 1–48 h B16-F10
melanoma

No (Natarajan
et al. 2017)

PD-1 89Zr/64Cu-
pembrolizumab

IgG 89Zr,
64Cu

1–144 h A375
melanoma
with human
peripheral
blood
mononuclear
cells

No (Natarajan
et al. 2018a)

PD-1 64Cu-
pembrolizumab

IgG 64Cu 1–48 h 293 T/hPD-1
and A375
melanoma
with human
peripheral
blood
mononuclear
cells

No (Hettich
et al. 2016)

PD-1 64Cu-anti-mouse
PD-1

IgG 64Cu 24 h Naïve and
PD-1+/+ mice,
B16-F10
melanoma

No (England
et al. 2017)

PD-1 89Zr-
pembrolizumab

IgG 89Zr 0.5–168 h Human PBMCs No (England
et al. 2018)

PD-1 89Zr-nivolumab IgG 89Zr 3–168 h A549 human
lung cancer

No (Bensch
et al. 2018)

PD-L1 C3, C7, E2
and E4

Nanobody 99mTc 1 h TC-1 myeloma No (Broos
et al. 2017)
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Table 1 Overview of nuclear imaging tracers for immune checkpoints. Only tracers that have been
published and used in at least preclinical in vivo studies are described in the tables below
(Continued)

Target Name Construct Label Timing Tumor type
/tissue

Therapeutic
use

Reference

PD-L1 111In-PD-L1.3.1 IgG 111In 1–7 d MDA-MB-231,
SK-Br-3,
SUM149,
BT474, MCF-7

No (Heskamp et al.
2015, 2019)

PD-L1 111In-PD-L1-mAb IgG 111In 48–120 h MDA-MB-231,
SUM149,
H2444, H1155

No (Chatterjee
et al. 2017)

PD-L1 WL12 Peptide 64Cu 10 min-120 h hPD-L1, CHO No (Chatterjee
et al. 2017)

PD-L1 [18F]AlF-
ZPD-L1_1

Affibody 18F 0 min LOX, SUDHL6 No (Gonzalez
Trotter
et al. 2017)

PD-L1 WL12 Peptide 68Ga 60 min hPD-L1, CHO No (De Silva
et al. 2018)

PD-L1 18F-BMS-986192 Adnectin 18F 2 h L2987, HT-29 Yes (Donnelly
et al. 2018)

PD-L1 α-PD-L1
(10F.9G2)

IgG 64Cu 24 h – No (England
et al. 2017)

PD-L1 18F-B3 Single
domain
antibody
(sdAb)

18F – – No (Ingram
et al. 2017)

PD-L1 anti-PD-L1 IgG 111In 1, 24 and
72 h

NT2.5 No (Josefsson
et al. 2016)

PD-L1 89Zr anti-PD-L1 IgG 89Zr 48 and 96 h MEER, B16F10 No (Kikuchi
et al. 2017)

PD-L1 WL12 Peptide 64Cu 2 h H226, HCC827 No (Kumar
et al. 2019)

PD-L1 Atezolizumab IgG 64Cu 24 and 48 h CHO-hPD-L1,
MDA-MB-231,
SUM149

Yes (Lesniak
et al. 2016)

PD-L1 89Zr-Df-KN035 IgG 89Zr 24 and
120 h

LN229 Yes (Li et al. 2018)

PD-L1 High-affinity
consensus (HAC)
PD-1, and
derivates

Peptide 68Ga,
64Cu

1 h CT26 and
CT26PD-L1+

No (Mayer
et al. 2017)

PD-L1 Atezolizumab IgG 89Zr 2, 24,48, 72
and 96 h

B16F10 Yes (Moroz
et al. 2018)

PD-L1 C4 IgG 89Zr 2, 24,48, 72
and 96 h

B16F10 No (Natarajan
et al. 2019)

PD-L1 FN3hPD-L1 Adnectin 64Cu 1–24 h CT26, Raji,
MDA-MB-231

No (Nedrow
et al. 2017a)

CTLA-
4

Anti-mouse CTLA-4 IgG 64Cu 48 h CT26 No (Higashikawa
et al. 2014)

CTLA-
4

Ipilimumab IgG 64Cu 48 h A549 lung
carcinoma
xenograft

Yes (Ehlerding et al.
2017, 2019)

CTLA-
4

Ipilimumab-F (Ab’)2 F (Ab’)2
64Cu 48 h Activated

human T cells
No (Ehlerding

et al. 2019)

CTLA-
4

H11, H11-PEG20 VHH,
PEGylated
VHH

18F,
89Zr

90 min
and 24 h

B16F10 No (Ingram
et al. 2018)

CD80/
CD86

Belatacept IgG1 Fc fused
with CTLA-4
extracellular
domain

111In 18–48 h Raji Yes (Meletta
et al. 2016)
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B16-F10 tumors, to detect PD-1 expressing tumor infiltrating lymphocytes (TILs)

(Natarajan et al. 2015). PET images obtained at 1–48 h after injection indicated tracer

uptake mainly in the tumor and spleen, which was both found to be PD-1 specific T

cell-mediated uptake confirmed by bioluminescence, IHC, and concurrent blocking of

uptake by co-injection of an excess unlabeled tracer. In a subsequent study, Natarajan

et al. developed a tracer against human PD-1. Pembrolizumab, a clinically approved

anti-PD-1 Ab, was radiolabeled with 64Cu or zirconium-89 (89Zr) to detect tumor infil-

tration of adoptively transferred human peripheral blood mononuclear cells (hPBMCs)

in NSG mice xenografted with human A-375 melanoma tumors (Natarajan et al. 2017).

Table 1 Overview of nuclear imaging tracers for immune checkpoints. Only tracers that have been
published and used in at least preclinical in vivo studies are described in the tables below
(Continued)

Target Name Construct Label Timing Tumor type
/tissue

Therapeutic
use

Reference

CD80 [11C]AM7 Small
molecule

11C 1 min APCs in
human
atherosclerotic
plaques

No (Meletta
et al. 2017)

OX40 AbOX40 Antibody 64Cu 2–9 days A20 yes (Alam
et al. 2018)

IDO/
TDO

[18F]IDO49 Small
molecule

18F Dynamic
scan initiate
during tracer
infusion

HeLa
xenografts

Yes (Huang
et al. 2017)

IDO/
TDO

1-N-[11C]-
methyl-L- and
-D-tryptophan
([11C]-L-1MTrp
and [11C]-D-
1MTrp)

Small
molecule

11C Dynamic
scan initiate
during tracer
infusion

– Yes (Xie
et al. 2015)

IDO/
TDO

L-5-[18F]fluoro-
tryptophan
and D-5-
[18F]fluoro-
tryptophan

Small
molecule

18F Dynamic
scan initiate
during tracer
infusion

CT26, CT26-
hIDO1, 17082A,
17095A

No (Tang
et al. 2017)

IDO/
TDO

5-[18F]F-L-α-
methyl
tryptophan (5-
[18F]F-AMT)

Small
molecule

18F 30 min B16F10 Yes (Giglio
et al. 2017)

IDO/
TDO

1-(2-[18F]fluoroethyl)-
l and d-
tryptophan
(1-L-[18F] FETrp
and 1-D-
[18F]FETrp)

Small
molecule

18F 5 min, 2 h Glioblastoma,
NSCLC
metastasis,
breast cancer
metastases,
MDA-MB-231

Yes (Michelhaugh
et al. 2017; Xin
and Cai 2017;
Xin et al. 2019;
Henrottin
et al. 2016)

CD276 5573a IgG 89Zr 1–7 d MDA-MB-231 Yes (Burvenich
et al. 2018)

A2aR [18F]FESCH and
[18F]FPSCH

Small
molecule

18F Dynamic
scan initiate
during tracer
infusion

Cerebral A2aR
imaging

Yes (Khanapur
et al. 2017)

A2aR [11C]KF17837 Small
molecule

11C Dynamic
scan initiate
during tracer
infusion

Cerebral A2aR
imaging,
Myocardium

Yes (Noguchi et al.
1998; Ishiwata
et al. 2000a,
1997, 2000c;
Alam et al. 2018)

A2aR [11C]KF18446 Small
molecule

11C Dynamic
scan initiate
during tracer
infusion

Cerebral A2aR
imaging

Yes (Ishiwata et al.
2000a, 2002,
2000c)
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89Zr-pembrolizumab uptake was observed in the tumor and spleen of hPBMCs

engrafted mice at 24 h after injection. Specificity for PD-1 was demonstrated by the

reduced 64Cu-pembrolizumab tumor uptake in mice coinjected with an excess of

unlabeled pembrolizumab. In a final study by Natarajan et al., the 64Cu human PD-1

tracer was evaluated in NSG mice xenografted with 293 T/hPD-1 stable non-cancer

cells and in NSG mice with adoptively transferred hPMBCs xenografted with A375

human melanoma cells (Natarajan et al. 2018a). PET imaging demonstrated specificity

of the tracer towards PD-1 in 293 T/hPD-1 tumors in mice that did not receive an

excess of unlabeled pembrolizumab compared to mice that did receive an excess of

unlabeled tracer which showed significantly less tumor uptake. Moreover, ex vivo

biodistribution indicated a statistically significant different tumor uptake between these

two groups at 1, 24, and 48 h after injection. Studies with the adoptively transferred

hPBMCs xenografted with A375 human melanoma mouse model indicated clear 64Cu-

pembrolizumab uptake in tumors, suggesting infiltration of hPBMCs into the tumor

microenvironment. Others evaluated the use of 89Zr-labeled nivolumab, a clinically

used anti-human PD-1 Ab, in humanized (engrafted with peripheral blood mono-

nuclear cells) or non-humanized NSG mice bearing subcutaneous A549 human lung

tumors (England et al. 2018). PET imaging revealed higher 89Zr-nivolumab tumor

uptake in humanized mice compared to non-humanized mice from 72 h onwards.

Experiments comparing the uptake of non-specific 89Zr-IgG versus 89Zr-nivolumab in

the humanized A549 tumor bearing mice confirmed the specificity of 89Zr-nivolumab

tumor uptake. Interestingly, specific salivary gland uptake was observed that was mainly

attributed to homing of lymphocytes due to graft versus host disease in this specific

Fig. 1 Immune checkpoint expression and main interactions on cell types which predominantly express
them. Depicted are immune checkpoints for which tracers have been developed. Not all immune
checkpoint interactions are known nor are all interactions displayed. For further reading on immune
checkpoints, we refer to De Sousa Linhares et al. (2018) PD-L1: Programmed Death-ligand 1, PD-1:
Programmed death-1, CTLA-4: Cytotoxic T lymphocyte associated antigen-4, A2aR: Adenosine 2a receptor,
IDO: Indoleamine 2,3-dioxygenase
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mouse model. These preclinical studies indicate that PD-1 imaging with PET might be

a useful tool to image the presence of PD-1 expressing lymphocytes in the tumor

microenvironment before ICI treatment or to image PD-1 expressing TILs during ICI

therapy for treatment monitoring.

Recently, in a first-in-human clinical study by Niemeijer et al., 89Zr-nivolumab tracer

uptake was evaluated in non-small cell lung cancer patients prior to nivolumab ICI

treatment (Niemeijer et al. 2018). As expected from mouse models, tracer accumulation

was observed in the spleen because of PD-1 expression on lymphocytes and Fc-

receptor mediated uptake (Arlauckas et al. 2017) as well as in the liver because of tracer

catabolism. More interestingly, a correlation between PD-1 expressing TILs by IHC in

a primary tumor biopsy and 89Zr-nivolumab uptake was observed. Moreover, higher
89Zr-nivolumab uptake prior treatment was observed in responding tumor lesions than

in non-responding tumor lesions after 3 months of nivolumab treatment. This study

demonstrated that PET imaging can be used to quantify and monitor PD-1 expression

non-invasively over time before ICI therapy.

PD-L1 imaging

For PD-L1 imaging different tracer moieties have been explored, ranging from peptides,

adnectins, up to full mAbs, labeled with various radionuclides for both PET and SPECT im-

aging of murine and human PD-L1 for mechanistic and translational purposes, respectively.

The first PD-L1 imaging agent was developed by Heskamp et al. who employed an
111In-labeled murine Ab directed against human PD-L1 and successfully imaged human

xenografts in athymic mice with different PD-L1 expression levels (Heskamp et al.

2015). In a subsequent study, they investigated whether changes in PD-L1 expression

on tumors could be visualized after radiotherapy using a mAb directed against murine

PD-L1. Colon carcinoma (CT26) and Lewis lung carcinoma (LLC1) syngeneic mouse

tumors showed significant increased tumor uptake after a single dose of 10 Gy external

beam irradiation (Heskamp et al. 2019) which correlated to the increased IHC PD-L1

expression levels. Kikuchi et al. also investigated the effect of radiotherapy on the

expression of PD-L1. A 89Zr-labeled mAb against mouse PD-L1 was used to show

increased tracer uptake in a syngeneic head and neck tumor model after fractionated

radiotherapy (Kikuchi et al. 2017). Other research teams have also successfully

employed mAbs for imaging of PD-L1 using different radionuclides, including 89Zr,
111In, 64Cu and 131I (Hettich et al. 2016; Chatterjee et al. 2016; Josefsson et al. 2016;

Nedrow et al. 2017a, 2017b; Lesniak et al. 2016; Li et al. 2018; Moroz et al. 2018; Truil-

let et al. 2018; Pang et al. 2018).

Next to mAbs, other moieties such as nanobodies, affibody molecules, adnectins

and peptides have been tested in preclinical tumor models. Broos et al. developed

a 99mTc-labeled anti-mouse PD-L1 nanobody (also known as single domain anti-

body or VHH) (Broos et al. 2017). Experiments with immunocompetent mice bear-

ing syngeneic myeloma TC-1 tumors showed specific physiological uptake in lungs,

heart, spleen, thymus, lymph nodes and brown fat, as well as moderate tumor up-

take. Others have shown successful studies using a 64Cu-labeled peptide that binds

human and mouse PD-L1 and demonstrated high uptake in PD-L1+ xenograft

models (Chatterjee et al. 2017). To achieve high-contrast images at earlier time
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points, they also optimized their peptide for a 68Ga-labeling. These results showed

less tracer accumulation in xenograft tumors, but higher tumor-normal-tissue con-

trast in the PET images. However, high kidney and liver uptake was also observed

(De Silva et al. 2018). Gonzalez et al. have shown results of a 18F-labeled affibody

molecule which specifically targets human tumor PD-L1, but also demonstrates

high renal and bone uptake (Gonzalez Trotter et al. 2017). Others have also pub-

lished positive results with smaller targeting agents radiolabeled with 99mTc, 18F,

and 68Ga (De Silva et al. 2018; Donnelly et al. 2018; Ingram et al. 2017; Kumar

et al. 2018; Mayer et al. 2017).

Niemeijer et al. performed the first in human PD-L1 imaging study with a PD-L1

targeting 18F-labeled adnectin (fibronectin binding domain 3 or monobody) (Nie-

meijer et al. 2018). Imaging with this low molecular weight tracer enabled same

day imaging and illustrated the heterogeneous nature of PD-L1, both within and

between patients with non-small-cell lung carcinoma (NSCLC). Most striking was

the comparison of biopsied material against PD-L1 positive lesions on PET, where

multiple cases of biopsy negative but scan-positive patients were observed. Further-

more, they showed therapy response was correlated with tracer uptake but not

with biopsy findings. It must be noted that PD-L1 expression in these scan positive

lesions was not confirmed with further biopsies and therefore we cannot conclude

that these areas are indeed PD-L1 positive. However, these findings do suggest that

PD-L1 can be expressed heterogeneously within and between tumors lesions and

biopsies provide only limited information. Although the number of patients were

limited, these results are encouraging for the future of immune checkpoint imaging

in humans.

Bensch et al. performed patient imaging of PD-L1 with a clinically approved thera-

peutic mAb, 89Zr-labeled atezolizumab (anti-human PD-L1) (Bensch et al. 2018).

Patients with metastatic bladder cancer, NSCLC or triple negative breast cancer being

treated with atezolizumab were included. This study also found distinct heterogeneity

of PD-L1 expression within and between patients on PD-L1 IHC. Furthermore, they

showed a strong predictive value of PD-L1 PET imaging on progression-free survival as

well as overall survival. When comparing PD-L1 PET to different PD-L1 IHC assays,

they found that IHC could not predict treatment response and survival. This showcases

the distinct value of imaging in patient stratification for immunotherapy, utilizing the

therapeutic agent as a tracer.

Xing et al. evaluated a sdAb labeled with 99mTc to visualize PD-L1 status in NSCLC

patients on SPECT (Xing et al. 2019). They demonstrated safety and of their imaging

compound and showed acceptable dosimetry when using 99mTc. Furthermore, they

were able to visualize PD-L1 positive tissues (spleen, liver and bone marrow) as well as

tumors at 2 h post injection. As well as in the studies by Bensch and Niemeijer, hetero-

geneous uptake was found between primary tumors and nodal or bone metastases.

Imaging CD28 and CTLA-4 and their ligands CD80 and CD86
The first molecule expressed by T cells in their activation cascade and required for

their survival, is CD28, which binds both CD80 and CD86 present on antigen present-

ing cells (APCs). This stimulatory interaction can be inhibited by Cytotoxic T

lymphocyte-associated antigen-4 (CTLA-4) which is also expressed by T cells and has a
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significantly higher affinity for CD80 (also B7–1) and CD86 (also B7–2) than CD28

(see Fig. 1). In a normal situation this inhibitory signal dampens T cell responses

thereby avoiding collateral damage to healthy tissues (Acuto and Michel 2003; Zhao

et al. 2018). So far several radiotracers for CTLA-4, CD80 and CD86 have been

reported.

CTLA-4 imaging

CTLA-4 is present on activated T cells and constitutively expressed by regulatory T

cells as well as some types of tumor cells (Contardi et al. 2005). Counteracting the

immune inhibitory effect of CTLA-4, the FDA-approved CTLA-4-inhibitor ipilimumab

shows great anticancer efficacy in a wide range of cancer types. Despite the multitude

of clinical therapeutical studies, more than 300 ongoing clinical studies for this mAb

alone (ClinicalTrials.gov 2019), only four publications on imaging of CTLA-4 have been

published. Higashikawa et al. (2014) used a 64Cu-labeled anti-murine CTLA-4 mAb to

visualize CTLA-4 in CT26 tumor-bearing BALB/c mice. Tumor uptake was signifi-

cantly higher in mice that received radiolabeled anti-CTLA-4 compared to mice that

received radiolabeled non-specific IgG. Polymerase chain reaction (PCR)-analysis on

CT26 tumor tissues from BALB/c and T cell lacking BALB/c nu/nu indicated that the

CTLA-4 expression was T cell dependent and therefore the tracer could be used to

image CTLA-4 positive T cells. In 2017, Ehlerding et al. reported uptake of 64Cu-la-

beled ipilimumab by CTLA-4 expressing human NSCLC xenografts (A549, H460, and

H358) (Ehlerding et al. 2017). In vivo tumor tracer uptake correlated with in vitro

CTLA-4 expression levels of these tumor cells, with the highest uptake in the A549 cell

line 48 h post infusion. Furthermore, antigen specificity was evaluated by administration

of excess unlabeled Ab to tumor bearing control mice. In a recent study, Ehlerding

et al., validated the same anti-CTLA-4 tracer and a 64Cu-labeled IdeS protease frag-

mented ipilimumab F (ab’)2 in human peripheral blood lymphocytes engrafted NBSGW

mice, a model that does not need full body irradiation to engraft human peripheral

blood lymphocytes (PBLs) (Ehlerding et al. 2019). Both tracers showed targeting in sal-

ivary glands which upon IHC analysis showed activated CTLA-4 positive lymphocytes

involved in a graft versus host disease. The F (ab’)2 tracer showed increased clearance,

and thereby an increased salivary gland to blood ratios. Furthermore, tracer specificity

was confirmed with non PBL engrafted NBSGW mice and radiolabeled nonspecific IgG

isotype controls (Ehlerding et al. 2019). Ingram et al. developed H11, an anti-CTLA-4

VHH that can be 18F or 89Zr-functionalized (Ingram et al. 2018). In vivo targeting of
18F-H11 in mice bearing T cell containing B16F10 tumors showed tracer uptake above

background. A 89Zr-labeled 20 kD PEG conjugated H11 (H11PEG20) showed a sub-

stantially improved signal to noise ratio in the tumor and uptake in the GVAX injection

site, a tumor model specific immune stimulatory cancer vaccine that was applied before

tumor inoculation, indicating activated T cell specific targeting. These results indicate

the feasibility of using radiolabeled anti-CTLA-4 agents for assessment of TIL or tumor

CTLA-4 expression levels. Currently, a first clinical CTLA-4 imaging study is ongoing,

where tumor lesion uptake and biodistribution of 89Zr-labeled ipilimumab will be

assessed at the start of ipilimumab therapy and 3 weeks post start of therapy. Further-

more, this study is designed to determine a possible correlation between tumor uptake
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and therapy responses, uptake in normal tissues and to assess a correlation between

‘on-target off-tumor’ targeting and toxicity (Philips and Atkins 2015).

CD80 and CD86 imaging

CD80 and CD86 are expressed mainly by APCs and their binding to CD28 and CTLA-

4 stimulates and inhibits immune responses, respectively. These molecules are also

expressed by some types of myelomas, lymphomas and carcinomas (Flörcken AaJ et al.

2017). Conditionally being either immune stimulatory or inhibitory, imaging CD80 or

CD86 expression in tumors might be used to predict response to CTLA-4 targeted

therapies. Alternatively, in case of CD80/CD86 negative tumor cells, imaging of these

targets could be used to non-invasively measure APC infiltration. Furthermore, if the

ongoing therapeutical clinical trial with CD80/CD86 targeting CAR-T cells turns out

successful, nuclear imaging could aid in patient selection for this treatment approach

(ClinicalTrials.gov 2019). Meletta et al. investigated in vivo tumor targeting of 111In-la-

beled belatacept (Meletta et al. 2016). This tracer, a fusion protein consisting of a

human IgG1 Fc fragment linked to the extracellular domain of CTLA-4, showed higher

uptake in CD80+/CD86+ Raji tumors (a Burkitt’s lymphoma) compared to uptake in

double negative NCI-H69 tumors. Furthermore, co-injection with excess unlabeled

belatacept in Raji tumor-bearing mice showed significantly decreased tracer uptake,

indicating specific receptor targeting of the tracer. Furthermore, Meletta et al. have

developed a 11C-labeled pyrazolocinnoline derivative AM7 to target CD80 positive cells

(Meletta et al. 2017). In vivo uptake of this tracer was low in atherosclerotic plaques

rich with CD80 expressing macrophages compared to [18F]FDG. Tracer specificity for

its target was confirmed by in vitro autoradiography and IHC (Muller et al. 2014).

Although no studies have been performed in patients, these studies suggest the feasibil-

ity of assessing CD80 and CD86 expression with radiolabeled tracers.

Imaging other immune checkpoint molecules
IDO and TDO imaging

Decreased extracellular tryptophan levels and increased kynurenines levels (trypto-

phan metabolites) inhibit T and NK cell proliferation and activation, therefore tryp-

tophan is a metabolic immune checkpoint (see Fig. 1). Some tumors exploit this

immune modulating mechanism by over-expressing tryptophan degrading enzymes

indoleamine 2,3-dioxygenase (IDO1 and IDO2) and tryptophan 2,3-dioxygenase

(TDO) (Platten et al. 2014; Munn and Mellor 2007). Several inhibitors for the rate

limiting enzyme IDO1 (such as Epacadostat, Indoximod and Navoximod) have been

developed and are currently undergoing evaluation in clinical trials as adjuvants

(Prendergast et al. 2017).

Multiple tracers for assessing expression levels of IDO1/TDO have been developed.

All tracers, except an 18F-labeled epacadostat analog developed by Huang et al. (2017),

are 18F or 11C-labeled derivatives of either L or D isomers of tryptophan (Table 1). Al-

though already developed in 1988, the first clinical study with the IDO1 tracer α-

[11C]methyl-L-tryptophan ([11C]AMT) was performed in 2006. In patients with brain

tumors, [11C]AMT-PET demonstrated increased tracer uptake in the tumor compared

to normal cortex (Juhasz et al. 2006). Moreover, multiple clinical [11C]AMT-PET trials
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demonstrated prolonged tracer retention and high uptake in NSCLC lesions (Juhasz

et al. 2009), invasive ductal breast carcinoma lesions Juhasz et al. (2012) and meningi-

omas Zitron et al. (2013). Further clinical studies with [11C]AMT-PET demonstrated

the ability to differentiate radiation necrosis from recurrent gliomas (Alkonyi et al.

2012), and showed a strong association of high tumor [11C] AMT uptake parameters

(SUVmax, SUVmean and tumor-to-background ratio) to a significantly decreased 1-

year survival (Kamson et al. 2014). Although a recent clinical [11C]AMT-PET study in

3 patients failed to demonstrate objective clinical responses to IDO inhibitor therapy, it

did show heterogeneous intratumoral tracer uptake potentially reflecting IDO activity

(Lukas et al. 2019). Furthermore, these results indicate that [11C]AMT-PET might be

used for stratification of true progression versus pseudoprogression. In a recent preclin-

ical study, in vivo tumor targeting of a newly developed IDO1 tracer, 1-(2-[18F]-fluor-

oethyl)-L-tryptophan ([18F]FETrp), was compared with [11C] AMT and increased SUVs

were observed for [18F] FETrp compared with [11C] AMT in lung, breast, and

brain xenografts (Michelhaugh et al. 2017). Target specificity of [18F] FETrp has

also been demonstrated in preclinical prostate, lung, breast, and glioma tumor

models by Xin et al. with a significantly higher tumor uptake than in low IDO1

expressing healthy tissues, and a correlation of in vitro cell binding and in vivo

[18F] FETrp tumor uptake. So far only [11C] AMT imaging agent is being investi-

gated clinically to evaluate whether IDO1 imaging could serve as a predictive

marker for immunotherapy. This study, [18F] FDG PET 48 h before pembrolizumab

and [11C] AMT imaging 24 h before pembrolizumab, will investigate a possible as-

sociation of the SUVmax with objective PD-1 between tracer uptake, PD-1 inhibi-

tor therapy response and IHC (Philips and Atkins 2015).

CD276 imaging

CD276 (also known as B7-H3) is presented at low levels on healthy tissues but

highly expressed by APCs and macrophages and by a range of solid tumors. Al-

though its target is still unknown, ample evidence is present that show its involve-

ment in inhibiting T cell function (see Fig. 1) (Dong et al. 2018). This is

substantiated by the antitumor effects of currently preclinically and clinically inves-

tigated CD276 inhibitors or targeted therapies (ClinicalTrials.gov 2019; Lee et al.

2017). To aid patient selection for CD276 inhibitor therapy, tracers are being devel-

oped. A humanized anti-B7-H3 mAb, 89Zr-labeled 5573a, has been used in immuno-

deficient CD276+ MDA-MB-231 tumor-bearing mice for non-invasive imaging of

CD276 (Burvenich et al. 2018). PET/MRI and biodistribution analysis showed sig-

nificantly higher tumor uptake compared with mice that were co-injected with an

excess unlabeled tracer, indicating CD276 specificity. This tracer demonstrates the

potential of in vivo CD276 imaging. However, further preclinical evaluation in im-

munocompetent mice is warranted in order to better understand tracer behavior

and to translate findings to patients.

A2aR imaging

The metabolic inhibitory immune checkpoint Adenosine 2a receptor (A2aR) is

expressed by neurological synapses, certain tumor cells, and a wide range of immune
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cells (e.g. macrophages, T cells and monocytes). Binding of adenosine to tumor-

expressed A2aR promotes tumor cell proliferation and metastasis, whereas ligation of

immune cell-expressed A2aR suppresses immune function (see Fig. 1) (Sek et al. 2018).

Together with increased extracellular adenosine levels caused by inefficient ATP pro-

duction by tumor cells, a wide range of tumors exploit this pro tumorigenic and im-

mune suppressive mechanism by expressing extracellular adenosine level increasing

enzymes (CD39 and CD73) (Gao et al. 2014). Various A2aR and CD39/CD73 an-

tagonistic therapies have been developed and show encouraging preclinical anti-

tumor results warranting the multiple ongoing clinical studies (ClinicalTrials.gov

2019). Noninvasive nuclear imaging could aid in the evaluation of new antagonists

and patient selection for A2aR and CD39/CD73 therapy. So far, all imaging studies

have focused on A2aR, probably because adenosine targeting tracers risk altering

the autoimmunity preventive effects of circulating adenosine. Furthermore, high ad-

enosine levels in plasma could also interfere with targeting of adenosine in the

tumor. Papers describing preclinical and clinical A2aR imaging studies have shown

impressive results for [11C] Preladenant, [11C] TMSX and 18F-labeled SCH442416-

analogs in a number of applications, most of which for intracranial A2aR imaging

(Noguchi et al. 1998; Zhou et al. 2017a, 2017b, 2017c, 2017d; Rissanen et al. 2013;

Ramlackhansingh et al. 2011; Sakata et al. 2017; Mishina et al. 2007, 2011; Naga-

nawa et al. 2007, 2014; Lahesmaa et al. 2018; Khanapur et al. 2014, 2017; Ishibashi

et al. 2018; Ishiwata et al. 2000a, 2002, 2000b, 1997, 2000c). No studies with these

tracers have yet been performed to asses tumor expression of A2aR, but as some

have already demonstrated to be safe for in human use, translation on short term

to the field of oncology should be achievable.

OX40 imaging

Binding of the ‘second wave’ co-stimulatory receptor OX40 (also known as CD134)

to its ligand OX40L promotes T cell activation (see Fig. 1). Several agonistic bio-

logicals for this stimulatory immune checkpoint have already shown objective re-

sponses in phase I clinical trials as mono or combination therapy (Infante et al.

2016; El-Khoueiry et al. 2017). To complement these therapies, nuclear imaging of

the T cell activation marker OX40 might be used to predict OX40 agonist re-

sponses or to follow treatment responses that focus on T cell activation. One study

describing the development and in vivo characterization of a tracer binding OX40

has been published. In 2018, Alam et al. showed that the 64Cu-labeled murine Ab

AbOX40 could be used to image OX40 noninvasively and longitudinally (Alam

et al. 2018). In this study, dual A20 lymphoma-bearing mice received either an im-

mune stimulant (Cytosine phosphodiester Guanine-oligodeoxynucleotides (CpG-

ODN), microbial signature DNA fragments) or vehicle only intratumorally in one

tumor, the second tumor was untreated. Two days post treatment, PET imaging

demonstrated increased 64Cu-AbOX40 uptake in CpG-ODN treated tumors and

their draining lymph nodes compared to vehicle treated and untreated tumors. Fur-

thermore, a notable increased tracer uptake was observed in the tumor draining

lymph nodes and spleen 9 days after treatment. These findings demonstrate that

anti-OX40 Abs are suitable for in vivo PET imaging of activated T cells.
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Further targets of interest
Besides the targets mentioned above, we believe there are other immune checkpoints

which are potentially important for future immune checkpoint inhibition therapies and

could become important targets for imaging as well. For example, LAG-3 and TIM-3

play a major role in the activation, proliferation and homeostasis of T cells. Multiple

clinical trials are currently ongoing to evaluate the safety and efficacy of pharmaceuti-

cals targeting LAG-3 and TIM-3 and a preclinical study is investigating potential of an

imaging tracer directed against LAG-3 (Vivier et al. 2019). Another target of interest is

V-domain Ig suppressor of T cell activation (VISTA). Antagonists blocking its inhibi-

tory functions, resulted in increased immune activation in multiple mouse models. Ex-

pression of VISTA in immune checkpoint blockade therapy resistant patients could

open up alternative treatment options. Finally, preclinical studies have demonstrated

that Inducible T cell costimulatory (ICOS or CD278) agonistic therapy improve the ef-

ficacy of other immune checkpoint therapies, and imaging could therefore be of inter-

est to predict response or stratify patients for combination therapy.

Discussion
Current studies demonstrate the wide variety of successful immune checkpoint im-

aging approaches. As is the case with all radiotracers, high target affinity, stable

in vivo behavior, and adequate specificity with minimal uptake in target negative tis-

sue are desired when performing imaging studies. As opposed to imaging of (often)

highly upregulated tumor related targets, immune checkpoints are mostly expressed

by highly mobile immune cells, or in some cases at physiological levels by tumor cells,

and can be dynamic in their expression levels over time. Because of this, determining

optimal imaging timepoints during the course of disease is more critical than in im-

aging studies exploiting the constitutively highly expressed tumor targets. Also, avail-

able immune imaging targets in tumor lesions can be low compared to physiological

expression levels in other immune-related organs in the body e.g. the spleen. Finally,

because of the inherent immunological functions of immune checkpoints, there is a

need to verify the effects tracers can exert on their target cell population; e.g. ‘on-tar-

get off-tumor’ immunogenicity or target cell differentiation or even depletion. Thus,

to develop tracers for immune checkpoint imaging with favorable characteristics some

issues require special attention.

First, determining in vivo targeting specificity is vital. To asses specificity, blocking

studies can be performed. Here, the addition of an excess unlabeled tracer is used to

block the labeled tracer from binding to its target in a concentration dependent man-

ner, remaining tracer uptake must then be attributed to aspecific EPR effects. However,

this method does not take into consideration dose-dependent biodistribution effects

(for instance: sink organs) and specific Fc-mediated uptake, which may also reduce

upon injection of an excess of unlabeled antibody. Alternatively, knockout mice can be

used; by missing the target protein of interest all eventual uptake can be considered as

non-target specific. The limitation here is that due to the genetic modification, develop-

mental changes may occur and the resulting animal might not be sufficiently compar-

able to the baseline strain. Finally, to asses aspecific uptake it is also possible to use

scrambled peptides, isotype control antibodies or other relevant controls depending on

tracer moiety.
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Second, because of their physiological role in regulating the immune response, im-

mune checkpoints can be expressed by a wide variety of tissues, including cancer cells,

subsets of immune cells, but also non-lymphoid tissues such as activated endothelial

cells, brown fat, or duodenum (Heskamp et al. 2019). The physiological target expres-

sion throughout the body leads to ‘on-target-off-tumor’ distribution of tracer. More-

over, as with PD-1, the same immune checkpoint can be expressed by immune cells

with immune stimulatory, suppressive or effector functions. Alternatively, certain im-

mune checkpoints, like CD80 and CD86, can both stimulate or inhibit immune re-

sponses. Therefore, choosing the animal model and conditions that will yield relevant

results is essential. Knowledge of the expression levels on different immune cells and

their location is not only essential in order to accurately interpret the acquired PET or

SPECT image, but also to find optimal dosing levels. For example, PD-L1 is highly

expressed by splenic cells and therefore the spleen acts as a sink organ. As a conse-

quence, at low tracer doses, all injected tracer will accumulate in the spleen, resulting

in rapid blood clearance and minimal targeting to other PD-L1 positive tissues like the

tumor (Heskamp et al. 2019; Nedrow et al. 2017b). By increasing the tracer dose, spleen

uptake can be saturated, resulting in restored circulation time and increased targeting

to tumor and other PD-L1 positive tissue. However, this is not the case for all immune

checkpoints or their ligands. For example, expression levels of PD-1 are much lower

and there is no sink organ affecting the biodistribution of PD-1 targeting tracers, there-

fore lower doses should be used to prevent saturation of all PD-1 and to obtain high

contrast images (Hettich et al. 2016).

Third, when targeting immune checkpoints expressed on immune cells, the number

of immune cells in a tumor may be below detection limit. Therefore, in order to be able

to detect these low number of cells, it is essential that the tracer demonstrates high and

specific uptake and can be labeled with sufficiently high specific activity. IgG based

imaging moieties will result in high absolute uptake in tissue of interest but also a long

circulation time, leading to imaging timepoints of 24 h and upward with low signal to

background contrast at early time points post injection. They are however widely avail-

able and can be easily coupled with various SPECT and PET isotopes. The presence of

the Fc region in antibodies has a large influence on its in vivo distribution, for example

Fc-mediated recycling and degradation by endothelial and immune cells leads to a long

circulation time and high liver uptake. Furthermore, antibodies are potentially

immunogenic, depending on the antibody isotype. This can cause anti-target immune

activation, complement activation or the formation of anti-drug antibodies, which

could lead to target cell depletion, altered tracer pharmacokinetics and serious adverse

events when there is cross-recognition of normal proteins; also it limits repetitive

imaging in animals. To prevent this, the glycosylation in the Fc domain can be modi-

fied, resulting in reduced FcRy mediated uptake (Vivier et al. 2019). Despite these draw-

backs, many therapeutic immune checkpoint targeting agents are antibodies and by

radiolabeling these agents, they can be used for theranostic purposes. Thus, molecular

imaging with therapeutic antibodies is still of great value. However, the use of smaller

tracers (nanobodies, minibodies, affibodies, peptides, adnectins etc.) does have some

advantages over intact antibodies. For example, it can result in higher target-to-

background signals. Because of the rapid pharmacokinetics of smaller tracers, imaging

is usually possible within 30min up to a few hours post injection, while lowering
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radiation exposure to the patient. Due to the absence of the Fc-region, there is no Fc-

mediated (re-)activity. However, these molecules need to be optimized in terms of

affinity and specificity in order to result in favorable in vivo behavior. The optimum

combination of different conjugations, PEGylation, spacers, chelator combinations, and

an isotope matched to the biological half-life of the tracer is paramount to develop a

good imaging moiety. PET may also be the preferred imaging method over SPECT

because of the higher sensitivity and resolution, especially in the clinical setting.

Although in the preclinical setting, SPECT has a higher resolution which can be used

to study the heterogeneity within a tumor in more detail.

Fourth, immune checkpoint-targeting radiotracers should be carefully designed so

that they do not interfere with nor alter normal functioning of target immune cells. For

example, upon binding of the tracer, irradiation might damage the immune cells and

different subsets of immune cells demonstrate differences in radio sensitivity. Poten-

tially this could alter their function, although literature reports T cell labeling with 89Zr

up to 0.5MBq/106 cells without negative effect on viability over a period of 7 days

(Bansal et al. 2015; Charoenphun et al. 2015). Moreover, terminally differentiated

effector cells have a short biological lifespan. Furthermore, high doses of immune-cell

targeting Abs might result in Fc receptor mediated depletion of these immune cells.

This can be circumvented by using micro doses of Ab, or by developing tracers with a

modified Fc domain, or lacking an Fc domain (Tavare et al. 2014, 2015).

Finally, in the preclinical setting it is essential to select the right animal model. It is

known that different immunocompetent mouse strains show varying immune

responses when encountering the same antigen. Many radiotracers described in litera-

ture have been tested in immunodeficient mice engrafted with human tumors, and

often the radiotracers do not cross react with the murine immune checkpoint. Al-

though this allows a first characterization of the radiotracers, it might be difficult to

translate the findings to the clinical setting as immune checkpoints are also expressed

on normal tissues. The use of humanized mice (mice transplanted with human immune

cells) will overcome some of the limitations. However, these animals still do not have a

fully functioning immune system, for example they lack mature T cells, or when T cells

are present, graft-versus-host responses might occur. This can be used to collect add-

itional proof of target specificity as observed by Ehlerding et al. in their CTLA-4

imaging studies. However, due to the inherent instability and ultimately lethal compli-

cations of such a transplanted foreign immune system, longitudinal studies are challen-

ging. Finally, although these humanized mice develop human immune cells, the other

tissues are still completely murine, therefore these models are not relevant for deter-

mining pharmacokinetics, biodistribution, immunogenicity or depletion effects. There-

fore, many researchers make use of tracers specifically developed to detect murine

immune checkpoints as this allows for experiments in animals with a fully functioning

immune system.

Future prospects

To realize the full potential of immune checkpoint imaging, it is essential that novel

immune checkpoint tracers are developed according to the requirements that serve

their (pre) clinical application. The first step to achieve this is to select the optimal
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tracer for preclinical or clinical research, keeping in mind the specific criteria discussed

in the previous section. Once these tracers have been validated, they can play an im-

portant role in early drug development, as it can provide information about pharmaco-

kinetics, tumor targeting, and potential off-tumor accumulation which could lead to

adverse side-effects of immune checkpoint inhibitors. Longitudinal molecular imaging

will also aid in elucidating dynamic expression and interactions of immune check-

points, and thus aid in better understanding of tumor immunology and providing new

insights for therapeutic interventions. When a novel ICI has shown promising anti-

tumor effects, imaging can be used to facilitate fast acquisition of preclinical and clin-

ical experimental data on multiple treatment combinations to ultimately design the

most rational treatment plan for a specific tumor immunological phenotype. Correct

analysis of acquired images hinges on understanding the immune checkpoint expres-

sion in relation to therapy. As already shown by Niemijer et al., patient stratification

based on whole-body PET imaging is a viable tool to facilitate treatment

individualization (Niemeijer et al. 2018). However, in order to achieve this in clinical

practice, high sensitivity and specificity, as well as access to practical preparation of the

radiopharmaceutical are necessary.

Given the wealth of unique data that can be derived from in vivo checkpoint imaging

prior to and during novel immune therapeutic (combination) strategies, complementary

to tissue sampling; it should be stimulated to apply molecular imaging tools in early

stages of drug development. Collaborative approaches between pharmaceutical industry

and academic partners have shown their impact in studies using currently approved

radiolabeled checkpoint inhibitors; and it is envisioned that this fosters similar studies

with next generation of immune therapies. In particular, when new clinical trials com-

bining different immune checkpoint therapies are being initiated. With only limited

number of patients available to include in these trials (Tang et al. 2018), strict patient

screening for treatment eligibility should be applied.

Conclusion
The introduction of immune checkpoint therapies initiated a new era of effective im-

mune therapy. The decision to treat patients with immune checkpoint therapies cur-

rently depends on immune checkpoint expression and infiltration of immune cells

detected with IHC, which requires invasive biopsies. In this review we have discussed

the potential of molecular imaging for immune checkpoint therapy drug development,

patient selection, and therapy individualization. For PD-L1 and PD-1, the strength of

PET imaging in immunotherapy was recently underlined by first-in-human trials cor-

relating uptake of immune checkpoint tracers with immunotherapy outcome (Niemei-

jer et al. 2018; Bensch et al. 2018). Since these studies have shown that PET imaging of

immune checkpoint expression in tumor lesions is safe and feasible, the road is open

for future clinical trials to validate the use of PET as a complementary diagnostic tool

to IHC for patient stratification prior to ICI therapy, for treatment monitoring during

therapy, and as a tool in early cancer drug development (Graphical abstract). Ultim-

ately, imaging with these new immune checkpoint tracers could aid to speed up devel-

opment and implementation of effective mono- and combination therapies, treatment

of only patients that potentially benefit and preventing severe side-effects in patients

that will not benefit from ICI therapy.
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