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Abstract

[11C]Carbon monoxide is an appealing synthon for introducing carbon-11 at a carbonyl
position (C=O) in a wide variety of chemotypes (e.g., amides, ketones, acids, esters, and
ureas). The prevalence of the carbonyl group in drug molecules and the present-day
broad versatility of carbonylation reactions have led to an upsurge in the production of
this synthon and in its application to PET radiotracer development. This review focuses
on the major advances of the past 15 years.
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Background
Carbon-11 is an unstable isotope that has a short half-life of 20.4min. This radioisotope

decays to stable boron-11 predominantly by positron emission (99.79%) and to a very low

extent by electron capture (0.21%). Replacement of a carbon atom in an organic

compound (e.g., drug or biomolecule) with carbon-11 does not modify its biological or

physicochemical properties to any appreciable extent (Pike 1997; Scott 2009). These are

attractive features for using carbon-11 to develop radiotracers for application with the

highly sensitive molecular imaging technique of positron emission tomography (PET).

The short half-life of carbon-11 allows more than one PET experiment in a single

day and in the same subject (Antoni 2015), enhancing the speed of data collection and

the throughput of subjects. The possibility to perform more than one study in 1 day in

the same subject facilitates test-retest studies and comparison of baseline PET data

with PET data after a pharmacological intervention (e.g., blocking studies). Conse-

quently, carbon-11 has a uniquely valuable role in expanding the biomedical and

clinical applications of PET. However, radiolabeling with carbon-11 requires quick

and efficient methods to maximize radiotracer yields (Långström et al. 2007, Dahl

et al. 2017a).

Carbon-11 can be produced in high activity, commonly up to about 100 GBq, and

with a high molar activity (ratio of radioactivity to mass; Am) often in a range of 40 to

750 GBq/μmol at the end of synthesis (Gómez-Vallejo et al. 2012) but also up to 9.7

TBq/μmol (Kihlberg et al. 2002; Noguchi and Suzuki 2003; Zhang and Suzuki 2005).
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By comparison, a single dose of a PET radiotracer for an experiment in a human

subject is about 400MBq. In our experience, a radiotracer Am that is greater than 40

GBq/μmol is acceptable for most PET experiments (Dahl et al. 2018). Arbitrarily, the

following qualitative description scale for Am (GBq/μmol) values has been used in this

review: 5–50 GBq/μmol: low; 50–100 GBq/μmol: moderate; 100–200 GBq/μmol: good;

200–400 GBq/μmol: high; 400 GBq/μmol or above: very high.

Carbon-11 is generally produced with a cyclotron by proton bombardment of nitro-

gen gas according to the 14N(p,α)11C nuclear reaction. Bombardment in the presence

of oxygen (0.5–1%) or hydrogen (5–10%) gives [11C]carbon dioxide or [11C]methane,

respectively. Oxygen or hydrogen can be present after [11C]carbon dioxide and

[11C]methane production, respectively. Oxygen and potential radioactive impurities

(e.g., oxygen-15) can be removed by concentrating the cyclotron-produced [11C]carbon

dioxide in a cryogenic trap (at liquid nitrogen or argon temperature) or over activated

molecular sieves, placed after the output of the cyclotron target chamber. Hydrogen

can be eliminated by trapping the cyclotron-produced [11C]methane in a Porapak col-

umn cooled to liquid nitrogen temperature (Landais and Finn 1989). Furthermore, it is

necessary to consider possible traces of water in the target gas and in any subsequently

used inert delivery gas (e.g., helium). These traces can affect the outcome and reprodu-

cibility of subsequent radiolabeling reactions but can be eliminated with a phosphorous

pentoxide trap positioned before a reaction apparatus (Landais and Finn 1989).

Several secondary [11C]synthons have been developed from the primary cyclotron-pro-

duced [11C]precursors, [11C]carbon dioxide and [11C]methane (Fig. 1), with yet others

emerging. These [11C]synthons enable quick, efficient, versatile, and creative 11C-labeling

of functionalized molecules (Miller et al. 2008; Rotstein et al. 2013; Taddei and Gee 2018)

and underpin fast progress in new PET radiotracer development. Examples of recently

developed [11C]synthons are [11C]carbon disulfide for labeling organosulfur compounds

(Haywood et al. 2015; Haywood et al. 2018) and [11C]fluoroform (Haskali and Pike 2017)

for labeling trifluoromethyl compounds.

[11C]Carbon monoxide was early described (Clark and Buckingham 1971) but its

emergence as a useful radiochemical synthon was relatively slow to follow. Interest has

Fig. 1 Some established [11C]synthons. Reaction conditions: i) H2/Ni at 400 °C; ii) 1. LiAlH4, 2. H2O; iii) Ag at
~ 350 °C; iv) I2 at 700–725 °C; v) S8/sand at 500 °C or P2S5/sand at 400 °C; vi) AgOTf at 160–200 °C; vii) CoF3 at
270 °C; viii) CuCl2 on pumice at 380 °C; ix) 2% O2, Fe at 300 °C; x) NH3/Pt at 920 °C
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been accelerated by major developments in mainstream transition metal-mediated

carbonylation chemistry and by improvements in [11C]carbon monoxide radiosynthesis

and application. This review summarizes the progress in [11C]carbon monoxide radio-

chemistry over the past 15 years, and covers advances in production, uses in radiolabel-

ing, and PET radiotracer development (Fig. 1).

Advances in [11C]carbon monoxide production

‘Gas-phase’ [11C]carbon monoxide production

The earliest methods for producing [11C]carbon monoxide were based on ‘gas-phase’

reduction of cyclotron-produced [11C]carbon dioxide over activated charcoal (Fig. 2, a)

or a metal surface, such as zinc or molybdenum, at a high temperature (Fig. 2, b and c).

The method using activated charcoal (Clark and Buckingham 1971) results in low Am.

Because PET radiotracers commonly need to be produced at high Am for efficacy and/

or safety, this method is nowadays more or less obsolete.

The first system for routine production of [11C]carbon monoxide used a heated zinc

column (390–400 °C) (Andersson and Långström 1995; Lidström et al. 1997). The use of

pre-concentrated [11C]carbon dioxide and a recirculation unit for the reduction produced

up to 70% yield and high Am typically in the 50 to 500 GBq/μmol range (Lidström et al.

1997). The generated [11C]carbon monoxide was utilized to produce 11C-labeled ketones

in 36–62% isolated yields. In some settings, this method has provided near quantitative

yields over many repeated runs (Dahl et al. 2015a). However, this method requires regular

column maintenance and its operational success depends on the quality of the zinc. With-

out adequate maintenance, yields become irreproducible due to formation of zinc oxides

on the metal surface over successive heating cycles. Performance may also vary unpredict-

ably with each batch of zinc. Furthermore, the temperature required for reducing

[11C]carbon dioxide (400 °C) is close to the melting point of zinc (420 °C). Therefore, acci-

dental overheating of the zinc column must be avoided.

Fig. 2 ‘Gas-phase’ [11C]carbon dioxide reduction on heated columns of: a activated charcoal; b Zn; c Mo;
d Zn supported on fused silica
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With the aim of developing a more convenient, efficient, and reproducible [11C]car-

bon monoxide synthesis, molybdenum heated to 850 °C was introduced as an alterna-

tive reductant (Zeisler et al. 1997). [11C]Carbon monoxide was obtained in up to 80%

yield and with high Am (up to 555 GBq/μmol), corrected to the end of radioisotope pro-

duction (ERP). The produced [11C]carbon monoxide was used to synthesize [11C]ben-

zophenone with a non-isolated yield of up to 81%. A molybdenum column, although

needing to be heated to a much higher temperature, requires less and easier mainten-

ance than a zinc column, and gives acceptably high and more reproducible yields (up

to 71%) (Dahl et al. 2015a). These features have allowed the molybdenum method to

be widely adopted for the production of [11C]carbon monoxide.

Recently, the use of solid-supported zinc has been reported for improving the ‘gas-

phase’ reduction of [11C]carbon dioxide to [11C]carbon monoxide (Dahl et al. 2017b).

Molecular sieves, fused silica (originally in the form of silica gel), and molybdenum

were investigated as solid supports with fused silica proving to be preferred. The use of

a heated column of zinc supported on fused silica at 485 °C (Fig. 2, d) gave an impres-

sive yield (93 ± 3%; n = 20). This approach overcame the main limitations of fast deacti-

vation and potential zinc metal melting, experienced with the traditional heated zinc

column. The generated [11C]carbon monoxide was tested in a 11C-carbonylation reac-

tion yielding the corresponding 11C-labeled product in 72% yield but with a rather low

Am of 11 GBq/μmol (Dahl et al. 2017b). Developments to improve the Am from this

method are needed for regular radiotracer synthesis applications. Nonetheless, this ad-

vance signifies an attractive direction for developing effective ‘gas-phase’ [11C]carbon

monoxide production methods.

A common requirement of these ‘gas-phase’ production methods is for fixed dedi-

cated equipment to occupy valuable hot cell space on a long-term basis. Therefore,

alternative ‘wet’ methods for [11C]carbon monoxide synthesis using portable apparatus

have been sought, as follows.

‘Wet’ [11C]carbon monoxide production

Over the past 15 years, many ‘liquid-phase’ methods to produce [11C]carbon monoxide

have been developed as alternatives to the ‘gas-phase’ methods. These methods aim to

avoid the dedicated equipment needs of the ‘gas-phase’ methodologies and to further

amplify the utility of [11C]carbon monoxide in PET radiotracer development. Examples

of these ‘wet’ methods are: i) the decomposition of [11C]formyl chloride, ii) the decom-

position of [11C]silacarboxylic acids, iii) the treatment of [11C]carbon dioxide with

fluoride-activated disilanes, and iv) electrochemical reduction of [11C]carbon dioxide.

The production of [11C]carbon monoxide from [11C]formyl chloride was one of the

first ‘wet’ methods to be described (Roeda et al. 2004). This method requires two chem-

ical steps: 1) synthesis of [11C]formate (or [11C]formic acid) through coupling of

[11C]carbon dioxide with lithium triethylborohydride in tetrahydrofuran (THF) at low

temperature (ethanol-ice bath), and 2) reaction of the [11C]formate with a complex

formed from hexachloroacetone and triphenylphosphine in THF at room temperature

(RT) to give [11C]formyl chloride. The [11C]formyl chloride decomposes instantly to

[11C]carbon monoxide (Fig. 3). With this methodology, [11C]carbon monoxide has been

obtained in a very high yield (98%) but with a low Am of 9.3 GBq/μmol. Limitations of
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this method may be the low reproducibility of the high yield and the low Am if the

system is not well maintained under an inert atmosphere. Low Am may especially arise

from the contamination of prepared reagents with atmospheric carbon dioxide, espe-

cially the reactive lithium triethylborohydride. Hence, this method has not gained much

traction for routine use.

In non-radiochemical studies, silacarboxylic acids have been shown to degrade upon

heating or in the presence of a base or a fluoride ion source to eliminate carbon monoxide

(Brook 1955; Brook and Gilman 1955; Friis et al. 2011). Based on these studies, [11C]sila-

carboxylic acids have been explored as precursors to [11C]carbon monoxide. Lithiosilanes,

prepared freshly from chlorosilanes and lithium in THF stirred at RT (either for 3 h or

overnight), were found to react with [11C]carbon dioxide to yield the corresponding

[11C]silacarboxylic acids. Specific [11C]silacarboxylates and [11C]silacarboxylic acids were

shown to release [11C]carbon monoxide almost quantitatively within a few minutes, upon

addition of tetrabutylammonium fluoride (TBAF) solution either at RT or with gentle

heating (60 °C) (Fig. 4, a). The generated [11C]carbon monoxide can be transferred to a

second vial with helium and used in a 11C-carbonylation reaction. Many radiolabeled

compounds, mainly [11C]amides and [11C]esters, were produced in this manner. Moderate

yields (> 30%) and Am in the 70–499 GBq/μmol range were achieved (Taddei et al. 2015;

Nordeman et al. 2015; Bongarzone et al. 2017).

The use of lithiosilanes enables [11C]carbon monoxide to be produced in a simple two-

vial set-up under mild reaction conditions. This overcomes the need for dedicated and

fixed infrastructure in the conventional ‘gas-phase’ methods. However, limitations of this

methodology are the rather lengthy preparation of fresh lithiosilane before [11C]carbon

dioxide production, reagent instability, and reactivity with atmospheric carbon dioxide.

These can negatively affect the [11C]carbon monoxide yield and Am. Furthermore, the

requirement to add the TBAF solution after [11C]carbon dioxide capture may also be a

limitation of this methodology in a routine setting.

Fig. 3 ‘Wet’ [11C]carbon monoxide production through decomposition of [11C]formyl chloride

Fig. 4 ‘Wet’ [11C]carbon monoxide production: a through decomposition of [11C]silacarboxylic acids; b
through fluoride-activated disilanes
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Disilanes have been found to react with carbon dioxide in the presence of a fluoride

ion source to yield the corresponding disiloxane with the elimination of carbon monox-

ide (Lescot et al. 2014). Disilanes are now considered to be compounds that are able to

produce [11C]carbon monoxide while overcoming some of the constraints of the

[11C]silacarboxylic acids methodology. 1,2-Dimethyl-1,1,2,2-tetraphenyldisilane was ini-

tially chosen for method development. Different fluoride ion sources and solvents were

explored leading to TBAF and THF as the optimal activator and reaction medium for

the process, respectively. Use of 0.1 equivalent of TBAF was found to be optimal for

maximal [11C]carbon monoxide production. The [11C]carbon monoxide yield increased

from 32% to 59% by optimizing the flow rate of the carrier gas for the delivery of

[11C]carbon dioxide into the reaction system.

Other disilanes have also been investigated. 1,1,2,2-Tetramethyl-1,2-diphenyldisilane

gave a maximal [11C]carbon monoxide yield of up to 74% at RT within 10min from

ERP (Fig. 4, b). The generated [11C]carbon monoxide was used in 11C-carbonylation

reactions yielding radiolabeled products in high yield and with an Am in the 100–120

GBq/μmol range (Taddei et al. 2017a). For optimal Am and reproducible yield, an inert

atmosphere (e.g., from a helium flow) must be maintained in the reaction vial during

reagent preparation and delivery of [11C]carbon dioxide to minimize contamination

from atmospheric carbon dioxide. This methodology enables the production of

[11C]carbon monoxide with commercially available compounds under very mild reac-

tion conditions and in a simple apparatus. It also eliminates: 1) the requirement for

devoted infrastructure, as in the routinely used oven-based methods (Zn and Mo), and

2) time-consuming reagent preparation, as in the [11C]silacarboxylic acids method.

The first electrochemical method for producing [11C]carbon monoxide from

[11C]carbon dioxide was recently described (Anders et al. 2017). This gave [11C]carbon

monoxide in ≤10% yield when using electrodes with an applied potential of − 1.8 V and

a Ni(cyclam)2+ or Zn(cyclen)2+ complex as an electrocatalyst under aqueous conditions

(0.1 M KCl) at 20 °C (Fig. 5). One limitation of this method was the low [11C]carbon

dioxide trapping efficiency. Therefore, base addition was explored for increasing the

retention of [11C]carbon dioxide. 1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU) or trietha-

nolamine (TEA) raised the trapping efficiency to 80% but decreased the yield of

[11C]carbon monoxide to about 3%. This decrease was attributed to an increase in the

pH of the solution after the addition of base. Nevertheless, the produced [11C]carbon

monoxide was used in a test carbonylation reaction and gave the 11C-labeled product

with an Am of 56 GBq/μmol. Further development is needed for this method to become

attractive and widespread for regular [11C]carbon monoxide production. Especially, a

substantial improvement in yield is required.

Fig. 5 ‘Wet’ [11C]carbon monoxide production through electrochemical reduction with Ni and Zn complexes
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Advances in trapping and utilization of [11C]carbon monoxide

Major obstacles that must be surmounted for effective utilization of gaseous [11C]carbon

monoxide are the generally low solubility and retention of this gas in organic solvents.

Various types of apparatus have been introduced to address this issue. A system in which

gaseous [11C]carbon monoxide is recirculated through the reactor was the first to be

introduced (Lidström et al. 1997). The introduction of high-pressure miniature autoclaves

quickly followed (Kihlberg and Långström 1999; Hostetler and Burns 2002; Kihlberg et al.

2006). If needed, these could be operated at high temperature (~ 200 °C). Such autoclaves

are still in use. A high-pressure (~ 3.5MPa) apparatus was reported to trap [11C]carbon

monoxide in organic solvents with high efficiency (generally > 90%) allowing the 11C-la-

beling of various chemotypes in good yields (> 37%) (Dahl et al. 2015a). Moreover, loop

reactors and micro-autoclaves enable efficient [11C]carbon monoxide utilization because

the volume ratio of gas-phase to solution-phase within the reactor can be kept small

(Eriksson et al. 2004, 2006, 2007).

A further notable advance has been the use of xenon to carry [11C]carbon monoxide

efficiently into reaction media. Xenon is highly soluble in organic solvents, such as

THF (Gibanel et al. 1993), and its use as delivery gas avoids undesirable build-up of

pressure in the reaction vessel (Eriksson et al. 2012).

In addition to the development of improved synthesis apparatus, several compounds

able to trap and then release [11C]carbon monoxide under specific conditions, such as

borane-THF and copper complexes, have been used to improve the retention and

utilization of [11C]carbon monoxide in solution. [11C]Boron carbonyl complexes, pro-

duced by reaction of [11C]carbon monoxide with a borane-THF complex in THF, have

been found to release the [11C]carbon monoxide upon heating (Fig. 6, a) (Audrain et al.

2004). This source of concentrated [11C]carbon monoxide was used in a Pd-mediated
11C-aminocarbonylation of iodobenzene to give [11C]N-benzylbenzamide in up to 47%

yield and the Pd-mediated 11C-carbonylation of 2-bromobenzyl alcohol to give [11C]iso-

benzofuran-1(3H)-one in up to 27% yield from trapped [11C]carbon monoxide. Trap-

ping efficiency was high (> 90%) under the reported conditions.

Another example of a complex able to trap and release [11C]carbon monoxide is

copper(I) scorpionate (copper(I) tris(pyrazolyl)borate, Cu(Tp*)). This can be formed

from commercially available reagents and traps [11C]carbon monoxide from carrier

streams with very high efficiency (96%). Release of [11C]carbon monoxide from this

complex is also highly efficient (99%) in the presence of a competing ligand, such as tri-

phenylphosphine (Fig. 6, b) (Kealey et al. 2009, 2014a, 2014b). The released [11C]carbon

Fig. 6 [11C]Carbon monoxide trapping and release: a from borane-THF complex; b from copper(I) scorpionate
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monoxide was used for 11C-carbonylation reactions in situ to give substituted [11C]am-

ides and [11C]ureas in moderate to high yields (≥ 47%).

Advances in radiolabeling methods with [11C]carbon monoxide

[11C]Carbon monoxide is an appealing synthon for labeling a vast array of radiotracer

chemotypes (Fig. 7) because of the broad versatility of modern transition-metal mediated

carbonylation reactions (Brennführer et al. 2009; Gadge and Bhanage 2014; Cornilleau et

al. 2015; Nielsen et al. 2018). Over the past 15 years, the radiochemistry of [11C]carbon

monoxide has been widely investigated and expanded (Kealey et al. 2014b; Rahman 2015;

Rotstein et al. 2016). Herein are summarized some of the latest advances in the use of

[11C]carbon monoxide in Pd-mediated reactions, UV-promoted reactions, and other tran-

sition metal-mediated reactions for the synthesis of a vast variety of [carbonyl-11C]com-

pounds (e.g., 11C-labeled ureas, amides, esters).

[11C]Carbon monoxide has been recognized as a potentially attractive alternative to

[11C]phosgene for the synthesis of [11C]ureas. Although [11C]phosgene is highly react-

ive and has been widely used for [11C]ureas synthesis (Roeda and Dollé 2010), the regu-

lar production of this [11C]synthon is very challenging and tedious, and often provides

low Am. Pd(II)-Mediated oxidative 11C-carbonylation reactions between aliphatic or

aromatic amines with [11C]carbon monoxide have been explored recently for the

synthesis of symmetrical and unsymmetrical [11C]ureas (Roslin et al. 2017) (Fig. 8, a).

Xenon was used to carry the [11C]carbon monoxide into a septum-sealed glass reactor.

[11C]Ureas were obtained in yields up to 61% and with high Am in the 247–319 GBq/

μmol range, under quite mild conditions (≤ 120 °C, 10 min).

Pd-Mediated carbonylation reactions have featured in the 11C-carbonylation of sev-

eral other chemotypes. Functionalized [11C]acrylamides have been prepared through

Pd(0)-mediated carbonyl insertions between 4-anilino-6-aminoquinazoline and substituted

vinyl iodides in a high-pressure micro-autoclave (Fig. 8, b). The desired [11C]acrylamides were

obtained in 24–61% yields and with an Am of 60GBq/μmol (Åberg and Långström 2012).

In another study, Pd(II)-mediated reactions were used to synthesize [11C]amides, a

[11C]ester, a [11C]carboxylic acid, a [11C]aldehyde, and a [11C]ketone at atmospheric

pressure under thermal heating (Fig. 8, c) (Dahl et al. 2013). The catalyst, Pd2(π-

Fig. 7 Versatility of 11C-carbonylation reactions with [11C]carbon monoxide
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cinnamyl)Cl2, was paired with the ligand Xantphos. This ligand performed better than

others, probably because of its wide bite angle. Microwave heating improved the yields

in the reactions of electron-deficient aryl halides. Furthermore, this methodology has

also been used with aryl chlorides as substrates to produce an [11C]arylcarboxylic acid

and [11C]aryl esters (Dahl et al. 2014).

Another approach for producing [11C]amides is a quick (5min) one- or two-pot Pd-me-

diated 11C-carbonylation reaction between an aryl halide and a lithiated amine that has

been freshly prepared from amine and n-butyllithium. Eleven [11C]amides were obtained

in isolated yields of 18–72% (Fig. 9) (Itsenko et al. 2007). This method extends the scope

of Pd-mediated 11C-carbonylation reactions to the use of weakly nucleophilic amines.
11C-Carbonylation of aryl, heteroaryl, allyl, and alkyl boronic acid pinacol esters in

the presence of p-benzoquinone and triphenylphosphine has been investigated for pro-

ducing a variety of [11C]methyl esters. Yields in the 6–80% range were obtained from

quick reactions (5 min) performed under atmospheric pressure with gentle heating

Fig. 8 Pd-Mediated 11C-carbonylations producing a [11C]ureas; b [11C]acrylamides; c [11C]amides, [11C]esters,
[11C]carboxylic acids, an [11C]aldehyde, and a [11C]ketone

Fig. 9 Synthesis of [11C]amides from lithiated amines through Pd-mediated 11C-carbonylation

Taddei and Pike EJNMMI Radiopharmacy and Chemistry            (2019) 4:25 Page 9 of 31



(Fig. 10) (Ishii et al. 2015). The conversion of [11C]methyl esters into the corresponding

[11C]carboxylic acids or [11C]amides was easily achieved through treatment with so-

dium hydroxide or aqueous ammonium, respectively (Fig. 10). This approach was also

applied to the synthesis of [carbonyl-11C]aspirin and [carbonyl-11C]salicylic acid in

yields of 15 ± 2% and 58 ± 5%, respectively. These yields surpass those obtained via the

direct 11C-carboxylation of Grignard reagents (Sasaki et al. 1999).

Diaryliodonium salts have featured prominently as reactive precursors for radiohalo-

genation reactions (Pike 2018; Telu et al. 2019). They are also known to undergo Pd(II)-

mediated carbonyl insertion with [11C]carbon monoxide (Al-Qahtani and Pike 2000). A

two-pot procedure for the rapid Pd(0)-mediated 11C-carbonylation of aryl(mesityl)iodo-

nium salts at RT and low pressure has been recently developed (Fig. 11) (Altomonte et al.

2017). A range of non-mesityl [11C]aryl carboxylic acids and [11C]aryl amides bearing an

electron-withdrawing or electron-donating group were obtained in up to 71% yield within

2min at RT.

[11C]Amides, [11C]esters, [11C]carboxylic acids, and [11C]aldehydes have also been pre-

pared via a two-step methodology, composed of: 1) in situ generation of a [11C]benzoyl

acid chloride through a Pd(0)-mediated 11C-carbonylation of an aryl iodide, and 2) subse-

quent reaction of the generated [11C]benzoyl acid chloride with a chosen nucleophile in a

second reaction vial (Fig. 12, a) (Dahl and Nordeman 2017). Many diverse 11C-labeled

products were obtained within 7min in 41–93% yields. This methodology has been

successfully extended to the synthesis of [11C]benzyl alcohols, [11C]benzaldehydes, and

[11C]phenyl ketones (Fig. 12, b) (Roslin et al. 2018) and is an attractive alternative to a

former method for accessing [11C]aryl acid chlorides based on the 11C-carboxylation of

Grignard reagents (Pike et al. 1982; Krasikova et al. 2009).

Pd-Mediated 11C-carbonylation reactions have been performed in novel experimental

set-ups (Fig. 13). A microfluidic reactor with a solution containing [11C]carbon monoxide

in the form of its complex with copper(I) scorpionate (Cu(Tp*)) was applied to the synthe-

sis of a model [11C]amide, namely [11C]N-benzylbenzamide. [11C]N-Benzylbenzamide was

obtained with a radiochemical purity of 69% under a microreactor temperature of 200 °C

and with a flow rate of 20 μL/min per syringe, corresponding to a very short residence

time (< 1min) in the microreactor (Fig. 13, a) (Kealey et al. 2011). [11C]Dibenzylurea was

formed as a significant byproduct (22 ± 1%).

The first application of a gas-liquid segmented-flow microfluidic platform was described

for the Pd-mediated synthesis of a variety of 11C-labeled compounds (e.g., [11C]amides and

[11C]esters) (Fig. 13, b). The 11C-labeled compounds were obtained in good yields (≥ 38%)

and with Am in the 40–54GBq/μmol range (Dahl et al. 2015b). These yields supersede those

Fig. 10 Synthesis of [11C]methyl esters through Pd(0)-mediated 11C-carbonylation of boronic acid pinacol
esters. PBQ = p-benzoquinone
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from a previously reported gas-liquid annular flow microfluidic apparatus (Miller et al.

2011). This improvement was attributed to the larger gas-liquid interface in the segmented-

flow because of the continuous formation of microbubbles (Dahl et al. 2015b).

Generally, Pd-mediated carbonylation reactions are limited to compounds that lack

β-hydrogens on saturated sp3 carbons, such as aryl halides or triflates. Compounds with

β-hydrogens do not produce carbonylated products with carbon monoxide because the

β-hydride elimination from σ-alkyl-Pd intermediates is competitive and usually

predominant (Fig. 14). To circumvent this issue, a high-pressure reactor with a quartz

window open to light from a mercury lamp has been used successfully for radical 11C-

carbonylations of substrates bearing β-hydrogen atoms (Fig. 15, a) (Itsenko et al. 2004).

Radical 11C-carbonylation has also been improved recently by using a low-pressure

xenon-[11C]carbon monoxide delivery unit and azobisisobutyronitrile (AIBN) as a

radical initiator under thermal conditions (Fig. 15, b). This approach showed broad

substrate compatibility with alkyl iodides containing β-hydrogen atoms. The desired

[11C]amides were obtained in 9–25% isolated yields and with an Am of 101 ± 13 GBq/

μmol (Chow et al. 2016).

Transition-metals other than palladium have been used to mediate 11C-carbonylation

reactions. One example is the nickel(0)-mediated 11C-carbonylation on non-activated

Fig. 12 Two-step methodology for the synthesis of a [11C]amides, [11C]esters, [11C]carboxylic acids, and
[11C]aldehydes; b [11C]benzyl alcohols, [11C]benzaldehydes, and [11C]phenyl ketones via [11C]benzoyl acid chlorides

Fig. 11 Syntheses of [11C]aryl carboxylic acids and [11C]aryl amides through 11C-carbonylation of diaryliodonium salts
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alkyl iodides bearing a β-hydrogen atom (Fig. 16). [11C]Alkyl amides were obtained in

33–57% yields within 5 min when using tert-butanol as solvent (Rahman et al. 2016).

However, this method requires handling of the nickel catalyst under an argon atmos-

phere to avoid any reagent oxidation that would result in failure of the radiolabeling

reaction.

Substituted [11C]ureas and [11C]sulfonyl ureas have been synthesized through rho-

dium(I)-mediated insertion of [11C]carbon monoxide between azides and amines

Fig. 14 Representation of β-elimination mechanism

Fig. 13 Pd-Mediated syntheses of: a [11C]amides in a microfluidic reactor; b [11C]amides and [11C]esters in a
gas-liquid microfluidic platform
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(Fig. 17, a) (Åberg and Långström 2011). This method shows good functional group

tolerance. The radiolabeled products were obtained under mild conditions in 14–96%

yields and with an Am in the 100–600 GBq/μmol range.

A Rh(I)-mediated multicomponent reaction between sulfonyl azides, alcohols, and

[11C]carbon monoxide has been reported for producing [11C]sulfonyl carbamates

(Fig. 17, b) (Stevens et al. 2016). This method is compatible with structurally diverse

sulfonyl azides. Various [11C]sulfonyl carbamates were produced in good yields (33–88%).

[11C]Carbon monoxide for PET radiotracer development

As a result of the major advances that have taken place in [11C]carbon monoxide

production and radiochemical utility, 11C-labeled carbonyl groups have become in-

creasingly prevalent in candidate PET radiotracer designs (Rotstein et al. 2016). The

possibility to radiolabel carbonyl groups is of extreme relevance for using PET in drug

distribution studies, where the unchanged drug structure needs to be radiolabeled and

where motifs, such as radiolabeled methyl groups or fluorine atoms, cannot be

introduced.

Although many applications of [11C]carbon monoxide require the presence of transi-

tion metals (e.g., Pd) as reagents for 11C-carbonylations, such metals have not been an

issue for producing radiotracers under CGMP conditions. For example, [11C]UCB-J

and [11C]FPEB have been produced for human use through Pd-mediated labeling reac-

tions (Lohith et al. 2014; Nabulsi et al. 2016; Lohith et al. 2017; DiFilippo et al. 2019).

In our laboratory, we have found that normal methods for radiotracer purification (e.g.,

HPLC) are capable of reducing Pd residues to sub-ppb levels (e.g., for the [11C]FPEB

synthesis (Lohith et al. 2014)). These levels are well below the limits considered

Fig. 15 Radical 11C-cabonylation of substrates with β-hydrogens: a at high pressure; b at ambient pressure

Fig. 16 Ni(0)-Mediated cross-coupling reaction of non-activated alkyl iodides bearing a β-hydrogen
atom. Ni(COD)2 = bis(1,5-cyclooctadiene)nickel(0)
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acceptable for parental administration of non-radiopharmaceutical drugs (1 ppm per

day; (USP 2017).

Additional considerations pertain to 11C-carbonylation reactions for PET radiotracer

synthesis, such as steric constraints adjacent to carbonylation sites, functional group

tolerance in more structurally elaborate substrates, and ease of product purification.

Moreover, the overall efficiency of the production process of a PET radiotracer, from

cyclotron radioisotope production to the radiochemically pure product ready for intra-

venous injection, is also an important aspect to consider. Ideally, the process should be

readily amenable to automation. Henceforth, we summarize the progress that has been

made towards producing PET radiotracers through reactions with [11C]carbon

monoxide.

The microfluidic apparatus described earlier has been tested for the syntheses of PET

radiotracers. The liquid-liquid phase microreactor featuring the copper complex

(Cu(Tp*)), was implemented to synthesize a 11C-labeled neuropeptide Y Y5 receptor

antagonist, [11C]MK-0233 (Table 1, Entry 1). [11C]MK-0233 was produced through a

Pd-mediated 11C-carbonylation reaction with [11C]carbon monoxide. [11C]Carbon

monoxide was released from a Cu(Tp*)11CO complex for an internal cyclization reac-

tion to give [11C]MK-0233 (Fig. 18, a). [11C]MK-0233 was obtained ready for intraven-

ous injection in a yield of 7.1 ± 2.2% from utilized [11C]carbon monoxide and with an

Am of 100 ± 15 GBq/μmol at 27 min from ERP (Kealey et al. 2011).

[O-methyl-11C]Raclopride and [O-methyl-11C]FLB 457 are well known radiotracers

for PET imaging of human striatal and extrastriatal D2/D3 receptors, respectively (Ito et

al. 1999; Okubo et al. 1999). [Carbonyl-11C]raclopride and [carbonyl-11C]FLB 457 (En-

tries 2 and 3) have been synthesized in a gas-liquid phase segmented microreactor

through Pd-mediated 11C-carbonylation reactions (Fig. 18, b). High non-isolated yields

of [carbonyl-11C]raclopride and [carbonyl-11C]FLB 457 (79 ± 1% and 61 ± 4%, respect-

ively) were obtained from utilized [11C]carbon monoxide (Dahl et al. 2015b). A series

of model [carbonyl-11C]amides were produced similarly in the same study and had

moderate Am (40–54 GBq/μmol).

[carbonyl-11C]Raclopride has also been produced through a one-step 11C-carbonylation

reaction at atmospheric pressure using Pd2(π-cinnamyl)Cl2 as catalyst and Xantphos as

Fig. 17 Rh(I)-Mediated 11C-carbonylations producing: a [11C]ureas and [11C]sulfonyl ureas; b [11C]sulfonyl
carbamates. [Rh(COD)Cl]2 = chloro(1,5-cyclooctadiene)rhodium(I) dimer
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Table 1 Radiotracers radiolabeled using [11C]carbon monoxide, the corresponding biological
target, and disease relevance

Entry Radiotracer Biological
target

Disease relevance Reference(s)

1 Y Y5 receptor Weight loss (Kealey et al. 2011)

2 D2 receptor Movement disorders,
schizophrenia

(Dahl et al. 2015b),
(Rahman et al.
2015), (Andersen et al. 2015)

3 D2 receptor Movement disorders,
schizophrenia

(Dahl et al. 2015b)

4 TSPO Neuroinflammation (Rahman and Långström
2007)

5 CB1 Neuropsychiatric disorders
(e.g., schizophrenia, anxiety,
and depression)

(Donohue et al. 2008)

6 mGluR1 Anxiety, mood disorders,
stroke, epilepsy, pain, and
schizophrenia

(Hong et al. 2015)

7 HDAC6 Neurodegenerative
disorders and cancer

(Lu et al. 2016)

8 BACE-1 Alzheimer’s disease (Nordeman et al. 2014)

9 5-HT1B Migraine, depression,
and anxiety

(Lindberg et al. 2019)
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Table 1 Radiotracers radiolabeled using [11C]carbon monoxide, the corresponding biological
target, and disease relevance (Continued)
Entry Radiotracer Biological

target
Disease relevance Reference(s)

10 OGA Alzheimer’s disease a

11 H3R Neuropsychiatric and
neurodegenerative disorders

(Dahl et al. 2013), (Dahl et
al. 2018)

12 H3R Neuropsychiatric and
neurodegenerative disorders

(Siméon et al. 2017)

13 Serine/
threonine
kinase

Melanomas (Slobbe et al. 2017)

14 sHE Inflammation and
neuropathic pain

(Roslin et al. 2017)

15 TG2 Celiac disease, cancer,
fibrosis, and neurodegenerative
diseases (e.g., Alzheimer’s,
Huntington’s, Parkinson’s
diseases)

(van der Wildt et al. 2016)

16 GAD Neuropsychiatric disease
(e.g., schizophrenia)

(Taddei et al. 2017b)b

17 cPLA2α Oxidative stress and
neuroinflammation

(Fisher et al. 2018)

18 Functionalized [11C]synthon for potential
PET radiotracers (e.g., barbiturates)

(Barletta et al. 2006)
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supporting ligand (Rahman et al. 2015). The yield of [carbonyl-11C]raclopride ready for

intravenous injection was 50 ± 5% from [11C]carbon monoxide trapped in the reaction vial

and the Am was 34GBq/μmol. The trapping efficiency was moderate (65 ± 5%). PET

experiments were performed in monkey to compare [carbonyl-11C]raclopride and

[O-methyl-11C]raclopride. A key question in this study was whether the change in

radiolabeling position from O-methyl to carbonyl would be detrimental to

[11C]raclopride performance in vivo. However, the PET experiments showed re-

markably similar results with regards to protein binding, emergence of radiometabolites

in plasma, and quantitative outcome measures of D2/D3 receptors (Rahman et al. 2015).

This similarity argues against demethylation as being a prime route of radiotracer meta-

bolism; more likely is that amide hydrolysis occurs.

It has been reasoned that two potentially slow steps in the Pd-mediated 11C-carbonyl-

ation of aryl halides (Fig. 19), namely activation of the Pd catalyst and subsequent

oxidative addition of the aryl halide, can be beneficially avoided by pre-synthesis and

isolation of the desired Pd-aryl oxidative addition complex (Aryl)Pd(X)Ln (Andersen et

al. 2015). This was confirmed with the 11C-aminocarbonylation of an isolated Pd-aryl

oxidative addition complex, formed from Pd(dba)2 and Xantphos, for the synthesis of

[carbonyl-11C]raclopride (Fig. 20) (Andersen et al. 2015). This radiotracer was obtained in

38–44% yield from trapped [11C]carbon monoxide within 8min from ERP and with a high

Am in the 333–407 GBq/μmol range. An advantage of this radiosynthetic approach was

that it gave [carbonyl-11C]raclopride in high initial purity (94 ± 1%) thereby reducing

separation challenge. Two other potential radiotracers, [carbonyl-11C]olaparib and a

Table 1 Radiotracers radiolabeled using [11C]carbon monoxide, the corresponding biological
target, and disease relevance (Continued)
Entry Radiotracer Biological

target
Disease relevance Reference(s)

19 AT2R Prostate cancer and idiopathic
pulmonary fibrosis

(Stevens et al. 2016)

20 Efflux
transporter P-
gp

Neurological disease
(e.g., Alzheimer’s disease)

(Verbeek et al. 2012)

21 TKI Cancer (Poot et al. 2013)

22 5-HT1B/1D Locomotion and anxiety (Lindhe et al. 2011)

aLu S, Haskali MB, Ruley KM, Dreyfus NJ-F, DuBois SL, Soumen P, et al. Discovery and development of 18F- and 11C-
labeled LSN3316612 as positron emission tomography radioligands for quantifying O-linked-β-N-acetyl-glucosamine
hydrolase in brain, submitted. bTaddei C, Filp U, Pekošak A, Poot AJ, Windhorst AD, Gee AD. Synthesis of a 11C-tracer for
potential brain glutamic acid decarboxylase (GAD) targeting, submitted
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neuropeptide Y Y3 receptor antagonist, [carbonyl-11C]JNJ 31020028, were also efficiently

radiolabeled from pre-formed Pd-complexes.

The synthesis of selective and potent PET radiotracers for translocator protein

(TSPO), a biomarker for neuroinflammation, is of continuing major interest (Dupont et

al. 2017). The TSPO radioligand, [O-methyl-11C]DAA1106 (Zhang et al. 2003), has

found quite wide application in clinical research. The 11C-labeling of DAA1106, and

some of its analogues has been achieved through Pd-mediated 11C-aminocarbonylation

reactions. A strong base, such as n-butyllithium, was used to activate the amine and im-

prove the overall yields. [carbonyl-11C]DAA1106 (Entry 4) was produced in 30% yield

and with a high Am of 455 GBq/μmol at 36 min after ERP (Fig. 21, a) (Rahman and

Långström 2007). Analogues were also obtained in moderate yields and with high Am.

Investigations are needed to compare the behavior of [carbonyl-11C]DAA1106 with that

of the established [O-methyl-11C]DAA1106, especially to test whether PET imaging

performance might differ because of potential differing radiometabolite profiles.

The development of PET radiotracers for imaging brain cannabinoid subtype-1 (CB1)

receptors has been pursued because of the implication of this receptor in a range of

neuropsychiatric disorders, such as schizophrenia, anxiety, and depression. [11C]PipISB,

a selective and high affinity CB1 receptor radioligand (Entry 5) has been produced ready

for intravenous injection within 44 min from ERP through a Pd-mediated 11C-amino-

carbonylation reaction between an aryl iodide precursor and [11C]carbon monoxide in

overall yields of 3–12% from [11C]carbon monoxide and with an Am in the 21–67 GBq/

μmol range (Fig. 21, b) (Donohue et al. 2008). This radiotracer was studied and com-

pared with the 18F-labeled version in monkey. Each radiotracer gave high proportions of

CB1 specific binding in brain (Finnema et al. 2009). However, neither [11C]PipISB nor

[18F]PipISB has been advanced to human study because other higher-performing

radiotracers for PET imaging of human brain CB1 receptors appeared concurrently

(e.g., [11C]MePPEP (Terry et al. 2009) and [18F]FMPEP-d2 (Terry et al. 2010)).

Changes in brain cholinergic neurons are implicated in several neurodegenerative

disorders. Vesicular acetylcholine transporter (VAChT) is considered a biomarker for

cholinergic neurons. The need of potential PET radiotracers for VAChT has been

addressed in the synthesis of a small library ([11C]5a − f, Fig. 22) of potential VAChT

radiotracers (Bergman et al. 2014). Six piperazine-based radiotracers were produced

through Pd-mediated 11C-carbonylation insertions between synthesized amines and

commercially available aryl iodides in isolated yields of 4–25% from starting radioactivity

and with Am in the 124–597 GBq/μmol range. Two of these radiotracers exhibited specific

binding to VAChT in vitro. However, these results did not support further evaluation of

these radiotracers in pre-clinical PET imaging.

The metabotropic glutamate subtype-1 receptor (mGluR1) has been implicated in

anxiety and mood disorders. Therefore, mGluR1 has gained interest as a potential drug

target. A Pd-mediated [11C]carbon monoxide insertion reaction has been used to pro-

duce [11C]FIMX as a potential PET radiotracer for imaging brain mGluR1 (Hong et al.

2015). [11C]FIMX (Entry 6), was synthesized through a two-pot procedure, composed

of Pd-mediated carbonylation of 1-fluoro-4-iodobenzene with [11C]carbon monoxide in

a first pot and subsequent treatment of the [11C]acylpalladium complex with Boc-pro-

tected amine precursor followed by Boc removal in a second pot (Fig. 23). [11C]FIMX

was obtained ready for intravenous injection in an overall yield of about 5% from initial
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cyclotron-produced radioactivity and with an Am of 102 ± 31 GBq/μmol at 42 ± 3min

from ERP. PET imaging in monkey showed [11C]FIMX to be an effective radiotracer

for mGluR1 and to have imaging properties very similar to those of [18F]FIMX (Hong

et al. 2015; Xu et al. 2013). A potential advantage of the 11C-label over the 18F-label is

the possibility for two PET measurements in a single subject in 1 day. This possibility

is convenient for drug occupancy studies which may require a series of paired baseline

and pharmacological challenge experiments in single subjects.

The synthesis of PET radiotracers for histone deacetylase 6 (HDAC6) has gained

interest because of the possible involvement of this enzyme in cancer and various

neuropsychiatric disorders (Wey et al. 2016). A hydroxamic group features prevalently

in many inhibitors of this enzyme. The HDAC6 inhibitor, tubastatin A, has been

Fig. 19 Pd-Mediated 11C-carbonylation of aryl halides

Fig. 18 Synthesis of a [11C]MK-0233; b [carbonyl-11C]raclopride, and [carbonyl-11C]FLB 457
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radiolabeled with carbon-11 (Entry 7) in the hydroxamic acid group via a two-step

process (Fig. 24), namely: 1) Pd-mediated [11C]carbon monoxide insertion between an

aryl iodide and p-nitrophenol, and 2) ultrasound-assisted hydroxyaminolysis of the pre-

formed [11C]ester with excess hydroxylamine in the presence of the strong phosphazene

base P1-t-Bu (Lu et al. 2016). [11C]Tubastatin A was obtained ready for intravenous injec-

tion in a yield of 16 ± 6% (n = 4) from initial cyclotron-produced [11C]carbon dioxide and

with a low Am of 7.4 GBq/μmol at 61min from ERP. However, attempts to apply this

radiolabeling approach to other hydroxamic acids were unsuccessful because the final

hydroxyaminolysis step gave only the corresponding [11C]carboxylic acids.

Novel PET radiotracers for the diagnosis and monitoring of Alzheimer’s disease are a

constant demand in the PET neuroimaging field. An hydroxyethylamine-based inhibitor

for enzyme β-secretase 1 (BACE-1), namely [11C]BSI-IV (Entry 8), has been labeled

through a Pd-mediated 11C-aminocarbonylation reaction on an aryl halide precursor

(Fig. 25) as a potential useful PET radiotracer for evaluating Alzheimer’s disease in vivo.

[11C]BSI-IV was produced in isolated yields of 29 ± 12% (n = 12) from trapped [11C]car-

bon monoxide and with a high Am of 790 ± 155 GBq/μmol (Nordeman et al. 2014).

Trapping efficiency was about 60%. Biodistribution and PET-CT studies were per-

formed on healthy rat brain sections and male rats, respectively. However, these studies

showed low specific binding of [11C]BSI-IV to BACE-1 in vitro, fast clearance in vivo,

Fig. 20 Use of a pre-formed Pd-aryl oxidative addition complex for the synthesis of [carbonyl-11C]raclopride

Fig. 21 Synthesis of a [11C]DAA1106 and b [11C]PipISB via Pd-mediated 11C-aminocarbonylation reactions
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and low uptake in brain. These results proved [11C]BSI-IV to be an unpromising PET

radiotracer for BACE-1.

The serotonin subtype 1B (5-HT1B) receptor is involved in migraine, depression, and

anxiety. [11C]Carbon monoxide has been implemented for radiolabeling AZ11136118, a

high-affinity full 5-HT1B receptor agonist. [11C]AZ11136118 (Entry 9) was obtained

ready for intravenous injection in 6.4 ± 1.6% overall yield from starting [11C]carbon

dioxide and with an Am of 83 ± 51 GBq/μmol (n = 7) within 50min from ERP through a

two-pot Pd-mediated 11C-carbonylation reaction (Fig. 26, a) (Lindberg et al. 2019). In

this study, another high-affinity full 5-HT1B receptor agonist, [11C]AZ11895987, was

synthesized using [11C]methyl triflate for an N-methylation reaction. PET imaging with

the two radiotracers were performed in monkeys to investigate how the intrinsic activity

of full 5-HT1B receptor agonist radiotracers might affect PET imaging outcomes.

However, both [11C]AZ11136118 and [11C]AZ11895987 exhibited too low brain uptake

to be useful PET radiotracers (Lindberg et al. 2019).

Very recently Lu et al. presented the development of effective radiotracers for PET

imaging of the enzyme O-GlcNAcase (OGA), a potential biomarker and therapeutic

target for tauopathy (Lu S, Haskali MB, Ruley KM, Dreyfus NJ-F, DuBois SL, Soumen

P, et al. Discovery and development of 18F- and 11C-labeled LSN3316612 as positron

emission tomography radioligands for quantifying O-linked-β-N-acetyl-glucosamine

hydrolase in brain, submitted). [3H]LSN3316612 had shown high selectivity and

potency for binding to OGA in post mortem brains of rat, monkey, and human. The

radiotracer, [11C]LSN3316612 (Entry 10), was produced for intravenous injection with

Fig. 23 Two-pot synthesis of [11C]FIMX

Fig. 22 11C-Labeling with [11C]carbon monoxide of potential VAChT radiotracers

Taddei and Pike EJNMMI Radiopharmacy and Chemistry            (2019) 4:25 Page 21 of 31



a two-step procedure through Pd-mediated 11C-carbonylation reaction (Fig. 26, b) in a

low overall yield (3.5 ± 1.3%) from cyclotron-produced [11C]carbon dioxide and with an

Am of 74 ± 39 GBq/μmol at 50 min after ERP. Evaluation of [11C]LSN3316612 with PET

in monkey demonstrated that this radiotracer is effective for quantifying OGA in

monkey brain.

The histamine type-3 receptor (H3R) has been considered a drug target for treat-

ing neuropsychiatric disorders. Novel amide ligands for H3R, have been radio-

labeled through Pd-mediated 11C-aminocarbonylation reactions and evaluated with

PET in monkeys (Dahl et al. 2018). [carbonyl-11C]AZ13153556, [carbonyl-11-

C]AZD5213, and [carbonyl-11C]AZ13198083 were obtained in good non-isolated

yields (≥ 80%) from starting [11C]carbon monoxide and with a moderate Am in the

19–28 GBq/μmol range at time of intravenous injection (Dahl et al. 2018). [carbo-

nyl-11C]AZ13198083 (Entry 11) (Fig. 27, a) had first been reported in 2013 (Dahl

et al. 2013). In the later study, [carbonyl-11C]AZ13198083 was found to be the

most promising of this candidate triad for potential PET imaging of H3R in living

human subjects.

Structurally elaborate [11C]aryl ketones, [11C]1–4 (Entry 12) (Fig. 27, b), have been

produced through Pd-mediated [11C]carbon monoxide insertion reactions between aryl

iodides and aryltributylstannanes as other examples of potential PET radiotracers for

imaging brain H3R. [
11C]1–4 were obtained for pre-clinical use in 5–9% yields from

Fig. 24 Radiosynthesis of [11C]tubastatin A. P1-t-Bu = tert-butylimino-tris(dimethylamino)phosphorene

Fig. 25 Synthesis of [11C]BSI-IV through a Pd-mediated 11C-aminocarbonylation reaction
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Fig. 26 11C-Labeling of a [11C]AZ11136118 and b [11C]LSN3316612 with [11C]carbon monoxide

Fig. 27 Synthesis of potential H3R radiotracers: a [11C]AZ13198083; b [11C]1–4; c 11C-labeling of
[11C]vemurafenib; and d of an sHE inhibitor [11C]19 through Pd-mediated 11C-carbonylation reactions
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cyclotron-produced [11C]carbon dioxide and with Am ≥ 115 GBq/μmol (Siméon et al.

2017). However, these radiotracers were not advanced to evaluation with PET.

Recently, vemurafenib (Entry 13), a serine/threonine kinase inhibitor, has been radiola-

beled with carbon-11 to assess its potential as a PET radiotracer for tumors expressing

the BRAFV600E mutation. Labeling was achieved through Pd-mediated 11C-carbonylation

in 21 ± 4% yield from [11C]carbon monoxide and with an Am of 55 ± 18GBq/μmol (Fig. 27,

c) (Slobbe et al. 2017). However, preliminary in vitro and biodistribution studies in mice

suggested that [11C]vemurafenib is not a suitable PET radiotracer for identifying the

BRAFV600E mutation in vivo (Slobbe et al. 2017).

The development of PET radiotracers for soluble epoxide hydrolase (sHE), an enzyme

implicated in inflammation and neuropathic pain (Shen and Hammock 2012), may be

of interest to further understand these pathophysiological processes. Recently, a urea

sHE inhibitor, [11C]19 (Entry 14), has been radiolabeled through a Pd-mediated oxida-

tive 11C-carbonylation between an aryl amine and an aliphatic amine (Fig. 27, d).

[11C]19 was obtained in 41 ± 7% yield from [11C]carbon monoxide and with an Am in

the 247–319 GBq/μmol range at 41–43min from ERP (Roslin et al. 2017). However,

evaluation of this radiotracer with PET imaging has not been reported.

Pd-Mediated 11C-aminocarbonylation reactions with [11C]carbon monoxide have

been exploited to generate substituted [11C]acrylamides as candidate PET radiotracers

for active tissue transglutaminase (TG2) (Fig. 28) (van der Wildt et al. 2016). Three
11C-labeled inhibitors ([11C]1–3) for TG2 were produced in 38–55% isolated yields from

starting [11C]carbon monoxide and with Am ≥ 202 GBq/μmol. Ex vivo biodistribution and

plasma stability studies were performed in healthy Wistar rats. One of the radiotracers,

[11C]3 (Entry 15), showed high metabolic stability, low brain uptake, and selective binding

to TG2 in tumor sections (van der Wildt et al. 2016).

Glutamic acid decarboxylase (GAD) is the major enzyme responsible for the synthesis

of the neurotransmitter γ-aminobutyric acid (Fenalti et al. 2007) and dysregulation of

GAD function has been implicated in neuropsychiatric disorders, such as schizophrenia

(Akbarian and Huang 2006). Attempts have been made to develop PET radiotracers for

GAD to potentially elucidate its function in neuropsychiatric disorders. [11C]MPATB

(Entry 16), a 11C-labeled analogue of the GAD inhibitor 3-mercaptopropionic acid, has

been synthesized through a one-pot Pd-mediated 11C-carbonylation on vinyl iodide in

the presence of tert-butanol and subsequent thiol-ene reaction with thiobenzoic acid

(Fig. 29). [11C]MPATB was produced in high radiochemical purity of 99% and an iso-

lated yield of 0.5–3% from starting [11C]carbon monoxide (Taddei et al. 2017b; Taddei

C, Filp U, Pekošak A, Poot AJ, Windhorst AD, Gee AD. Synthesis of a 11C-tracer for

potential brain glutamic acid decarboxylase (GAD) targeting, submitted). Further

development to improve the overall yield of [11C]MPATB may be required.

[11C]Carbon monoxide has also been used with vinyl iodide to produce racemic side-

chain labeled 11C-labeled amino acids, namely the neurotransmitter glutamate and the

Fig. 28 Pd-Mediated 11C-carbonylation approach used to 11C-label potential TG2 inhibitors
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essential amino acid glutamine through a three-step approach: 1) Pd-mediated 11C-car-

bonylation of vinyl iodide in the presence of tert-butanol or tritylamine, followed by 2)

Michael addition reactions with the generated [11C]acrylate and [11C]acrylamide, re-

spectively, and finally 3) acid hydrolysis (Fig. 30) (Filp et al. 2017). The initial 11C-car-

bonylation reactions proceeded in high yields under preferred conditions (> 70%). The

Michael addition reaction was moderately efficient when using CsOH·H2O as base for

the synthesis of [11C]glutamine. Furthermore, introduction of a chiral phase-transfer

catalyst resulted in some stereoselectivity for the Michael addition reaction.

Four carboxylic acid-type high-affinity inhibitors, [11C]1–4 (Entry 17), of cytosolic

phospholipase A2α (cPLA2α), an enzyme implicated in neuroinflammatory conditions,

have been radiolabeled through Pd-mediated 11C-carbonylation on aryl iodide precur-

sors followed by hydrolysis (Fig. 31). The desired 11C-labeled inhibitors were obtained

ready for intravenous injection in 1.1–5.5% overall yields from [11C]carbon dioxide and

with an Am in the 70–141 GBq/μmol range (Fisher et al. 2018). These candidate radio-

tracers were evaluated with PET imaging in mice. However, they proved to be ineffect-

ive PET radiotracers because of their low entry and retention in brain following

intravenous administration.

Transition-metals other than palladium have been used to mediate 11C-carbonylation

reactions for the synthesis of candidate PET radiotracers. One example is the Rh-pro-

moted 11C-carbonylation reaction with ethyl diazoacetate and ethanol to produce [car-

bonyl-11C]diethyl malonate (Entry 18) in an isolated yield of 20 ± 7% from starting

radioactivity and with an Am of 127 GBq/μmol at EOS (Fig. 32, a) (Barletta et al. 2006).

This difunctional labeling synthon was then alkylated to produce [carbonyl-11C]diethyl

2,2-diethylmalonate in 50% yield as a candidate PET radiotracer. This approach is

promising for the synthesis of different [carbonyl-11C]malonates as potential PET radio-

tracers (Barletta et al. 2006).

A Rh-mediated 11C-carbonylation reaction has also been used to synthesize a 11C-la-

beled agonist of non-peptide angiotensin II subtype 2 receptor (AT2R), a receptor

Fig. 30 Synthesis of [11C]glutamate and [11C]glutamine via Pd-mediated 11C-carbonylation followed by
Michael addition reactions

Fig. 29 Synthesis of [11C]MPATB through Pd-mediated 11C-carbonylation followed by a thiol-ene reaction
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involved in prostate cancer. This radiotracer, namely [11C]C21 (Entry 19), was obtained

from a sulfonyl azide in a multicomponent reaction in 24 ± 10% yield from [11C]carbon

monoxide and with an Am in the 34–51 GBq/μmol range (Fig. 32, b), and then evalu-

ated with PET in rats (Stevens et al. 2016). [11C]C21 bound specifically to prostate

tumor cells expressing AT2R but showed rapid metabolism and excretion, limiting its

use as a PET radiotracer. Nevertheless, these findings provide an impetus for further

development of AT2R-selective PET radiotracers.

Rh-Promoted 11C-carbonylations have also been used to synthesize a candidate radio-

tracer for the efflux transporter P-glycoprotein (P-gp) in rats, namely [11C]phenytoin

(Fig. 32, c; Entry 20). [11C]Phenytoin was produced ready for intravenous injection

in an overall yield of 22 ± 4% and with an Am of 277 ± 67 GBq/μmol at the end of

synthesis (Verbeek et al. 2012). However, PET evaluation in rats showed

[11C]phenytoin to be a weak Pg-p substrate. Another example is the Rh-mediated

synthesis of [urea-11C]sorafenib (Fig. 32, d; Entry 21), a 11C-labeled tyrosine kinase

Fig. 32 Rh-Mediated synthesis of: a [11C]diethyl malonate; b an agonist of AT2R, [
11C]21; c [11C]phenytoin;

d [11C]sorafenib

Fig. 31 11C-Labeling approach used for four candidate inhibitors of cPLA2α
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inhibitor. [urea-11C]Sorafenib was obtained ready for intravenous injection in a yield of

27% ± 11% and with an Am of 30–50 GBq/μmol within 50min (Poot et al. 2013).

[urea-11C]Sorafenib proved to be stable in in vivo. This may encourage future PET studies

for tumor targeting in tumor-bearing mice.

Selenium-mediated 11C-carbonylation reactions were early described for the

synthesis of functionalized [11C]carbamates (Kihlberg et al. 2002). More recently,

[carbonyl-11C]Zolmitriptan (Entry 22), a serotonin 5-HT1B/1D receptor agonist, has

been prepared in an autoclave through a Se-mediated [11C]carbon monoxide

insertion reaction (Fig. 33) (Lindhe et al. 2011). [11C]Zolmitriptan was used to map

binding sites in monkey brain and to characterize the regional distribution of

zolmitriptan binding to 5-HT1 receptor subtypes. This PET radiotracer showed a

high proportion of binding (90%) to high-affinity sites and a discrete regional

distribution in monkey brain (Lindhe et al. 2011).

Conclusions
[11C]Carbon monoxide continues to emerge as a useful radiolabeling synthon for

introducing the [11C]carbonyl group into a wide variety of chemotypes. It can be

prepared and utilized efficiently, and high Am can be achieved. The radiolabeling

reactions with [11C]carbon monoxide show high functional group tolerance provid-

ing avenues towards attractive single-step PET radiotracer production. Furthermore,

the metabolic hydrolysis of PET radiotracers that are 11C-labeled in an ester or amide car-

bonyl site can lead to poorly brain-penetrant radiometabolites, such as the corresponding

[11C]carboxylic acids. This is especially relevant and useful for avoiding PET signal con-

tamination when PET imaging is performed with radiotracers targeting brain proteins.

Candidate PET radiotracers produced from [11C]carbon monoxide have so far ad-

vanced only to evaluation in animals. It may be expected that in time some candidate

PET radiotracers, synthesized through 11C-carbonylation reactions, will justify their

production for PET imaging in human subjects. To encourage further progress in this

direction, there is a need for commercially available automated radiosynthesis appa-

ratus specific for [11C]carbon monoxide production and utility and which provides a

high level of consistent performance, especially in a CGMP (current good manufac-

turing practice) environment.
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