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Abstract

Background: Radiotheragnostics makes use of the same molecular targeting vectors,
labeled either with a diagnostic or therapeutic radionuclide, ideally of the same
chemical element. The matched pair of scandium radionuclides, 44Sc and 47Sc,
satisfies the desired physical aspects for PET imaging and radionuclide therapy,
respectively. While the production and application of 44Sc was extensively studied,
47Sc is still in its infancy. The aim of the present study was, therefore, to investigate
and compare two different methods of 47Sc production, based on the neutron
irradiation of enriched 46Ca and 47Ti targets, respectively.

Methods: 47Sc was produced by thermal neutron irradiation of enriched 46Ca targets
via the 46Ca(n,γ)47Ca→ 47Sc nuclear reaction and by fast neutron irradiation of 47Ti
targets via the 47Ti(n,p)47Sc nuclear reaction, respectively. The product was compared
with regard to yield and radionuclidic purity. The chemical separation of 47Sc was
optimized in order to obtain a product of sufficient quality determined by labeling
experiments using DOTANOC. Finally, preclinical SPECT/CT experiments were
performed in tumor-bearing mice and compared with the PET image of the 44Sc
labeled counterpart.

Results: Up to 2 GBq 47Sc was produced by thermal neutron irradiation of enriched
46Ca targets. The optimized chemical isolation of 47Sc from the target material
allowed formulation of up to 1.5 GBq 47Sc with high radionuclidic purity (>99.99%) in
a small volume (~700 μL) useful for labeling purposes. Three consecutive separations
were possible by isolating the in-grown 47Sc from the 46/47Ca-containing fraction.
47Sc produced by fast neutron irradiated 47Ti targets resulted in a reduced
radionuclidic purity (99.95–88.5%). The chemical purity of the separated 47Sc was
determined by radiolabeling experiments using DOTANOC achievable at specific
activities of 10 MBq/nmol. In vivo the 47Sc-DOTANOC performed equal to 44Sc-DOTANOC
as determined by nuclear imaging.

Conclusion: The production of 47Sc via the 46Ca(n,γ)47Ca nuclear reaction demonstrated
significant advantages over the 47Ti production route, as it provided higher quantities of a
radionuclidically pure product. The subsequent decay of 47Ca enabled the repeated
separation of the 47Sc daughter nuclide from the 47Ca parent nuclide. Based on the
results obtained from this work, 47Sc shows potential to be produced in suitable quality
for clinical application.
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Background
Over the past few years, the concept of personalized medicine, where patient treatment

is performed according to an individually tailored treatment regime, has gained much

recognition (Kraeber-Bodere and Barbet 2014). In nuclear medicine, this approach is

realized by exploiting diagnostic techniques, such as non-invasive imaging by means

of Positron Emission Tomography (PET) and Single Photon Emission Computed

Tomography (SPECT), together with individualized radiotherapeutic treatment

(Velikyan 2012). The resulting combination became known as the theragnostic ap-

proach and comprises the use of the same molecular targeting vectors, labeled either

with a diagnostic or therapeutic radionuclide (Baum and Kulkarni 2012). Ideally, the

employed radionuclides represent a matched pair, where both are radioisotopes of the

same chemical element. Only a limited number of matching radionuclides entail suit-

able decay characteristics for radiotheragnostic application (Rösch and Baum 2011);

of those the radionuclides of scandium, 44Sc/43Sc and 47Sc, are interesting candidates.

Based on the physical and chemical characteristics, the β−-emitter 47Sc is particularly

interesting for radionuclide therapy, while the decay characteristics of 44Sc and 43Sc are well-

suited for diagnostic PET imaging (Table 1) (Rösch 2012; Müller et al. 2014a, 2014b; Walczak

et al. 2015).

This matched pair would present an attractive alternative to 68Ga and 177Lu, which

are currently used in clinics for PET imaging and therapy, respectively (Oh et al. 2011).

Ga(III) and Lu(III) can be coordinated by 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetra-

acetic acid (DOTA)-complexes (Majkowska-Pilip and Bilewicz 2011), however, they do

not share the same coordination chemistry. Lu(III) is coordinated by all carboxyl

groups of the octadentate DOTA (Viola-Villegas and Doyle 2009; Parus et al. 2015),

while Ga(III) has a preference for the coordination number six, leaving two uncoordin-

ated carboxyl groups in the Ga-DOTA-complex (Viola-Villegas and Doyle 2009;

Majkowska-Pilip and Bilewicz 2011). As a result, these structural differences may have

an influence on the radioconjugate’s chemical properties and, consequently, on the

in vivo kinetics and receptor binding affinity (Reubi et al. 2000; Majkowska-Pilip and

Bilewicz 2011). By using chemically identical radionuclides such as 44Sc/47Sc–known to

form stable complexes with DOTA–this limitation could be addressed.

The physical half-life of 44Sc of 3.97 h (recently re-determined as 4.04 h (Garcia-Torano

et al. 2016), is almost 4-fold longer than that of 68Ga (T1/2 = 68 min) and, hence, allows its
Table 1 Nuclear data of theragnostic radionuclides for therapy and PET imaging

Therapeutic radionuclide Diagnostic radionuclide (positron emitter)

Half-life [d] Eβ−av [keV] Eγ [keV] (Iγ [%]) Half-life [h] Eβ+av [keV] (I[%]) Eγ [keV] (Iγ [%])
177Lu 6.65 134 113 (6.4) 208 (11.0) 68Ga 1.13 830 (89) 1077 (3.0)
47Sc 3.35 162 159 (68.3) 44Sc 4.04 632 (94) 1157 (99.9)

43Sc 3.89 476 (88) 372 (23.0)

Intensities less than 5% were not considered
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use with biomolecules with slower kinetics. Due to the possibility of shipping 44Sc-radio-

pharmaceuticals over long distances, it can also facilitate logistics as it would allow cen-

tralized production and distribution to remote hospitals (Chakravarty et al. 2014; van der

Meulen et al. 2015). The increased availability of 44Sc has initiated a number of preclinical

in vitro and in vivo studies with DOTA-conjugated biomolecules (Müller et al. 2013a,

2013b; Hernandez et al. 2014) and, recently, labeling of NODAGA (1,4,7-triazacyclononane,1-

glutaric acid-4,7-acetic acid)-functionalized peptides and DTPA (N-[(R)-2-amino-3-(para-iso-

thiocyanato-phenyl)propyl]trans-(S,S)-cyclohexane-1,2-diamine N,N,N’,N”N”-pentaacetic

acid)-functionalized antibodies was also demonstrated (Chakravarty et al. 2014; Domnanich

et al. 2016).

The emission of low-energy β−-particles from 47Sc (Eβ−av = 162 keV, Table 1) is par-

ticularly interesting for targeted radionuclide therapy of small tumors and cancer me-

tastases, similar to the clinically-established 177Lu (Eβ−av = 134 keV, T1/2 = 6.65 d,

Table 1). Moreover, the shorter half-life of 47Sc (T1/2 = 3.35 d) would encourage its use,

in conjunction with small molecules, with relatively fast pharmacokinetic profiles. In

analogy to 177Lu, the decay of 47Sc is characterized by the co-emission of γ-rays with

an ideal energy (Eγ = 159 keV, Table 1) for SPECT imaging (Müller et al. 2014a).

The availability of high 47Sc activity with adequate purity becomes a crucial issue for

the realization of more detailed preclinical investigations and future clinical applica-

tions. So far, successful production of 47Sc was described by two different neutron in-

duced reactions: 47Ti(n,p)47Sc and 46Ca(n,γ)47Ca→ 47Sc (Fig. 1) (Bartoś et al. 2012;

Müller et al. 2014a). To produce 47Sc from 47Ti, fast neutrons (En > 1 MeV) are re-

quired, while the 46Ca(n,γ)47Ca reaction is induced by thermal neutrons (En = 0.025 eV)

(Bartoś et al. 2012). Proton irradiation of enriched 48Ti targets made 47Sc available via

the 48Ti(p,2p)47Sc nuclear reaction, however, too much of the long-lived 46Sc was co-

produced (Srivastava 2012). An alternative 47Sc production route considers photonu-

clear reactions on enriched 48Ti and 48Ca targets, respectively (Yagi and Kondo 1977;

Mamtimin et al. 2015; Rane et al. 2015; Starovoitova et al. 2015). So far only the former

route was studied in detail with enriched targets (Yagi and Kondo 1977), while for the

latter only natural target material was used for initial benchmark experiments.
Fig. 1 Nuclear reactions for production of 47Sc from 46Ca via 46Ca(n,γ)47Ca→ 47Sc (a) and from 47Ti via 47Ti(n,p)47Sc (b)
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The aim of the present study was to optimize the parameters of the previously-reported

production process for 47Sc from enriched 46Ca targets (Müller et al. 2014a) in order to

reproducibly obtain increased 47Sc yields in a formulation allowing direct preclinical ap-

plication after radiolabeling and to compare it with the method using 47Ti as target mater-

ial. 47Sc labeling experiments with DOTANOC were performed as part of the quality

control. In the second part of the study the stability of 47Sc-labeled DOTANOC was in-

vestigated and SPECT/CT imaging studies were performed in tumor-bearing mice to

compare the performance of 47Sc-DOTANOC with the previously obtained PET images

of the 44Sc-labeled counterpart. Moreover, comparison of SPECT images obtained with

mice injected with 177Lu-DOTANOC were also performed.
Methods
Chemicals

Enriched 46CaCO3 (83.09% 40Ca, 1.19% 42Ca, 0.36% 43Ca, 8.55% 44Ca, 5.00 ± 0.50% 46Ca,

1.81% 48Ca, Trace Sciences International, USA) was used as target material for thermal neu-

tron irradiation. Enriched 47TiO2 (0.41% 46Ti, 95.7 ± 0.3% 47Ti, 3.61% 48Ti, 0.15% 49Ti,

0.13% 50Ti, Isoflex, USA) was reduced to 47Ti metal and used as target material for fast neu-

tron irradiation. Prior to irradiation, a precursory scan for trace metals by ICP-OES (Perkin

Elmer Optima 3000) was performed.

The chemical separation of Sc from Ca was performed on a N,N,N’,N’-tetra-n-octyldigly-

colamide, non-branched resin (DGA, particle size 50–100 μm, TrisKem International,

France). SCX cation exchange cartridges (100 mg Bond Elut SCX, particle size 40 μm, Agi-

lent Technologies Inc., USA) or DGA extraction chromatographic resin were used for the

preconcentration of Sc. Chemical separations were performed with MilliQ water, hydro-

chloric acid (HCl, 30% Suprapur, Merck KGaA, Germany) and sodium chloride (NaCl,

Trace Select, ≥99.999%, Fluka Analytical, Germany). For the 47TiO2 reduction process, cal-

cium hydride (CaH2, metals basis, Mg <1%, Alfa Aesar, Germany), argon (Ar, 99.9999%,

Linde, Germany) and acetic acid (CH3COOH, 100% Suprapur, Merck KGaA, Germany)

were used. Nitric acid (HNO3, 65% Suprapur, Merck KGaA, Germany) was required for the

preparation of the 46Ca targets. DOTANOC acetate was obtained from ABX GmbH, ad-

vanced biochemical compounds, Germany.
Production of 47Sc from enriched 47Ti

The reduction of 47TiO2 was performed at Helmholtz Center for Heavy Ion Research

(GSI) in Darmstadt as described elsewhere (Lommel et al. 2014). Briefly, the enriched
47TiO2 was combined with 40% surplus of calcium hydride and the reduction process

was performed under constant argon flow at 900 °C for 1 h. Dilute acetic acid was used

for the isolation of the reduced 47Ti metal from the co-produced calcium oxide.

To prepare the targets, 0.6–19.9 mg reduced 47Ti powder was placed in a quartz glass

ampoule (Suprasil, Heraeus, Germany) and sealed. The targets were irradiated with

neutrons at the spallation-induced neutron source, SINQ, at Paul Scherrer Institut

(PSI) at a fast neutron flux (>1 MeV) of 3.3–3.5 × 1011 n cm−2 s−1 for 1.5–18.9 days and

in the BR2 reactor at SCK.CEN, Mol, Belgium in a reflector channel at a fast neutron

flux (>1 MeV) of 5.7 × 1013 n cm−2 s−1 for 7 days. 47Sc was formed via the 47Ti(n,p)47Sc

nuclear reaction with fast neutrons.
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Production of 47Sc from enriched 46Ca

To prepare the targets, 65–91 mg enriched 46CaCO3 powder was dissolved in concentrated

nitric acid and evaporated to complete dryness at 60–70 °C. The 46Ca(NO3)2 residue was

taken up in dilute nitric acid (~1 M HNO3) and an aliquot of the aqueous solution (0.14–

0.35 mg 46Ca) transferred into a quartz glass ampoule, evaporated to dryness and sealed.
47Sc was produced by the irradiation of the described 46Ca targets with thermal

neutrons at the high flux reactor of Institut Laue-Langevin (ILL) in Grenoble, France at a

thermal neutron flux of 1.0–1.4 × 1015 n cm−2 s−1, for 4 to 11 days, and at the BR2 reactor

at SCK.CEN, Mol, Belgium at a thermal neutron flux of 3.2 × 1014 n cm−2 s−1 for 7 days,

respectively. 47Sc was generated by the decay of the formed 47Ca (T1/2 = 4.54 d) occurring

during the irradiation, but also after removal of the ampoule from the reactor.
Separation of 47Sc from 46Ca and 47Ca

The irradiated 46Ca ampoules were delivered to PSI several days post-irradiation (2.6–

12.4 d) and the 47Sc separation was performed immediately, similarly to previously

reported (Müller et al. 2014a). Each ampoule was transferred into a hot cell and the

glass surface was cleaned twice with ~20 mL 1.0 M HCl and rinsed twice with ~20 mL

MilliQ water. The crushing of the quartz glass ampoule was performed within a plastic

target tube in a separate hot cell. Subsequently, the target tube containing the crushed

ampoule was attached to the separation panel with the aid of manipulators. The design

of the separation panel, including the adaptation of its operation inside the hot cell,

was a crucial part of the method development (Fig. 2). The 46Ca(NO3)2 (~10–25 mg)

from the ampoule was dissolved in 4 mL 3.0 M HCl and transferred from the target

tube to the reaction vessel. A system of syringes, peristaltic pumps and three-way valves

(see schematic of the panel in Fig. 2) was used to transfer the reagents from outside

into the hot cell. To ensure complete dissolution of the target material, the solution

was pumped from the target tube to the reaction vial and back several times. The solu-

tion was loaded on a pre-conditioned DGA column (1 mL cartridge filled with 50–

70 mg of DGA resin). A second rinse cycle of the crushed glass ampoule with 2.5 mL

3.0 M HCl ensured collection of final traces of the 47Sc activity, which were subse-

quently sorbed onto the DGA resin column. Radioactivity detection probes were at-

tached in the vicinity of the target tube and the DGA column to follow the transfer of

the 47Sc radioactivity. Further application of 2 mL 3.0 M HCl removed the stable 46Ca

and radioactive 47Ca from the DGA resin. The entire Ca-containing effluent was col-

lected in a separate vessel and kept for consecutive separation of further in-growing
47Sc from the decaying 47Ca. The sorbed 47Sc was eluted from the resin column with

4 mL 0.1 M HCl and sorbed on a second column containing SCX cation exchange resin

(Method A). Alternately, the 47Sc-containing eluate was collected, acidified to yield a

3.0 M HCl solution and sorbed on a second, smaller DGA resin column (1 mL cart-

ridge filled with 20–25 mg DGA resin) at a slow flow rate of ~0.3 mL/min (Method B),

as described by Domnanich et al. (Domnanich et al. 2016). The elution of 47Sc from

the second column was performed with 700 μL 4.8 M NaCl/0.1 M HCl (for Method A)

and with 1.7 mL 0.05 M HCl (for Method B) via a separate valve. In order to collect
47Sc in a small volume, the 0.05 M HCl (Method B) was fractionized into three Eppendorf

vials; the first contained ~700 μL and the other two ~500 μL each. Fractionized collection



Fig. 2 Schematic diagram of the 47Sc production panel. The components drawn in green are used only to
perform separations according to Method A, the parts required for Method B are shown in red, while black
indicates the apparatus components used for both methods
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was not necessary for Method A, as the highest proportion of the 47Sc radioactivity was

trapped in a low quantity of eluate.

The renewed generation of 47Sc, by the decay of radioactive 47Ca in the

Ca-containing fraction (47Ca and stable 46Ca), enabled subsequent separations after a

minimum in-growth time of 3 days.
Radionuclidic purity

To identify the nuclide inventory of the samples, γ-ray spectrometry with an N-type

high-purity germanium (HPGe) coaxial detector (EURISYS MESURES, France) and the

Ortec InterWinner 7.1 software were employed. The aliquot of 47Sc eluate was in the

range of 3–15 MBq, while the entire neutron irradiated glass ampoules containing the
47Ti were used for the measurements. The counting time was determined by ensuring

the measurement error was <4%. To determine small activities of long-lived radionucli-

dic impurities, γ-spectrometry measurements of the same samples were performed with

an extensive counting time several days post-irradiation.
Radiolabeling for quality control of the produced 47Sc

After quantitative determination of the 47Sc activity in the eluate with a dose calibrator

(ISOMED 2010, Nuclear-Medizintechnik Dresden, GmbH, Germany), the required ac-

tivity for radiolabeling in 0.05 M HCl was withdrawn from the product vial and 0.5 M

sodium acetate solution (pH 8) was added to the 47Sc eluate to obtain a pH value of

~4.5. DOTANOC (0.7 mM solution in MilliQ water) was added to the 47Sc solution

(~50 MBq) to obtain a specific activity of 10–25 MBq/nmol (2–5 nmol DOTANOC).

The reaction mixture was incubated at 95 °C for 15 min. The preparation of 177Lu-
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DOTANOC (25 MBq/nmol) was carried out under standard labeling conditions

(pH 4.5, 95 °C) using no carrier-added 177Lu (purchased from Isotope Technologies

Garching GmbH, Germany) (Müller et al. 2013a).

High-performance liquid chromatography (HPLC, Merck Hitachi, LaChrom) with a

C-18 reversed-phase column (XterraTM MS, C18, 5 μm, 150 × 4.6 mm; Waters) was

used for determination of the radiolabeled fraction of DOTANOC. The detection was

performed with a UV (LaChrom L-7400) and radiodetector (Berthold, HPLC Radio-

activity Monitor, LB 506B). The mobile phase consisted of MilliQ water containing

0.1% trifluoracetic acid (A) and acetonitrile (B) with a gradient of 95% A and 5% B to

20% A and 80% B, over a period of 15 min, at a flow rate of 1.0 mL/min.
In vitro stability of 47Sc- and 177Lu-labeled DOTANOC

The in vitro stability of 47Sc- and 177Lu-labeled DOTANOC (radiochemical purities

>95%) was investigated in phosphate buffered saline (PBS, pH 7.4). An activity of

50 MBq of 47Sc- or 177Lu-DOTANOC was diluted with PBS (pH 7.4) to a total volume

of 500 μL and incubated at room temperature for 3 days. Once every 24 h an aliquot

was withdrawn to determine the integrity of the labeled compound by means of HPLC.
SPECT/CT imaging with 47Sc- and 177Lu-DOTANOC

In vivo experiments were approved by the local veterinarian department and conducted

in accordance with the Swiss law of animal protection. Female, athymic nude mice

(CD-1 nude) at the age of 5–6 weeks were obtained from Charles River Laboratories,

Sulzfeld, Germany. AR42J cells (rat exocrine pancreatic tumor cells, European Collec-

tion of Cell Cultures ECACC, Salisbury, U.K.) were suspended in PBS (5 × 106 cells in

100 μL) and subcutaneously inoculated on each shoulder. SPECT/CT experiments were

performed about 2 weeks after tumor cell inoculation, when the tumor reached a size

of about 400 mm3.

Imaging studies were performed using a small-animal SPECT camera (NanoSPECT/CT™,

Mediso Medical Imaging Systems, Budapest, Hungary) as previously reported (Müller et al.

2014b). The energy peaks for the camera were set at 159.4 keV (± 10%) for the scans with
47Sc and 56.1 keV (± 10%), 112.9 keV (± 10%) and 208.4 keV (± 10%) for the scans with
177Lu. SPECT/CT scans were followed by CT scans. The images were acquired using

Nucline Software (version 1.02, Bioscan Inc., Poway, California, US). The reconstruction

was performed iteratively with HiSPECT software (version 1.4.3049, Scivis GmbH, Göttin-

gen, Germany). SPECTand CT data were automatically co-registered and the fused datasets

were analyzed with the VivoQuant post-processing software (version 2.50, inviCRO Imaging

Services and Software, Boston, USA).

The mice were injected intravenously with 47Sc-DOTANOC (12 MBq, 1.2 nmol,

100 μL) and 177Lu-DOTANOC (40 MBq, 1.2 nmol, 100 μL), respectively. The in vivo

SPECT/CT scans of 35 min duration were acquired 3 h after injection of 47Sc-DOTA-

NOC. During the scans, the mice were anesthetized by inhalation of a mixture of iso-

flurane and oxygen. Post-mortem scans of 1.3–3.5 h were performed 6 h after injection

of 47Sc- and 177Lu-DOTANOC. The SPECT acquisitions were performed in such a

manner to obtain the same total number of counts for each scan.
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Results
Production of 47Sc from 47Ti via the (n,p) reaction

The irradiation of enriched 47Ti targets at both SINQ and the BR2 reactor resulted in the for-

mation of 0.07–4.9 MBq 47Sc at the end of irradiation (EOI). The respective 47Sc saturation

yields were determined to be between 1.8 and 10.0 MBq 47Sc/mg 47Ti 10−13 n cm−2 s−1 (sum-

marized in Table 2) by taking the irradiation time, mass of enriched 47Ti and fast neutron flux

into consideration. γ-spectrometry measurements of the neutron-irradiated 47Ti ampoules re-

vealed that, other than 47Sc, the long-lived radionuclidic impurity 46Sc was formed. The

amount of generated 46Sc was influenced by the irradiation period and the neutron energy

(Bokhari et al. 2010; Zerkin 2016) and ranged from 3.8 to 11.5% 46Sc/for the irradiations at

SINQ (Additional file 1: Figure S3). Considerably less 46Sc (0.05%) was produced by the irradi-

ation at the BR2 reactor, however. In view of the high percentage of co-produced 46Sc and the

relatively low 47Sc production yield at both facilities, the production of sufficiently high 47Sc

activities for radiopharmaceutical applications was not considered feasible and, thus, chemical

isolation of 47Sc from neutron irradiated 47Ti targets was not performed.
Production of 47Sc from 46Ca via the (n,γ) reaction

The irradiation of 46Ca targets with thermal neutrons resulted in the formation of 47Ca,

which decayed to 47Sc and yielded 210–2140 MBq 47Sc at the time the separation was per-

formed. The 47Sc saturation yield was determined by taking the mass of 46Ca, the irradiation

time (tirr), the decay time after EOI (twait) and the thermal neutron flux (Φth) into account

and was within the range of 85–98 MBq 47Sc/mg 46Ca 10−13 n cm−2 s−1, which is compar-

able with the calculated 47Sc saturation yield of 92 MBq 47Sc/mg 46Ca 10−13 n cm−2 s−1

(summarized in Table 3). 47Sc is formed during the irradiation but also, however, for some

time after the end of irradiation by the decay of 47Ca. This implies that both the irradiation

time (tirr = 7.0–11.0 d) and the elapsed post-irradiation time until the start of the separation

(twait = 3.0–12.5 d) are part of the yield-determining factors. The highest 47Sc activities

under the applied irradiation conditions become accessible at an optimal post irradiation

waiting time (topt) and are represented as relative activity a(47Sc)opt in Table 3. The mea-

sured relative 47Sc activities (a(47Sc)meas) are lower than the optimal relative 47Sc activities

(a(47Sc)opt), as the separations were performed several days after the optimal waiting time.

The variable f(47Sc) describes the ratio of the 47Sc activity at topt and the 47Ca activity at

EOI. It can be considered as a measure for the maximal obtainable 47Sc activity, since both

activities are referred to the time point of their maximum. The formulae used for the calcu-

lation of A(47Sc)calc, topt, a(
47Sc)opt and f(47Sc) are given in Additional file 1: Figure S1 a-d.
Table 2 Activity and yield of 47Sc at the end of irradiation (EOI) with fast neutrons (>1 MeV) at
SINQ (irradiations PSI 1, PSI 2 and PSI 3) and at the BR2 reactor (irradiation SCK.CEN)

Irradiation tirr [d] m (47Ti)
[mg]

A (47Sc) at
EOI [MBq]

A (47Sc)saturation
[MBq/mg 47Ti 10−13

n cm−2 s−1]

46Sc activity at
EOI [%]

PSI 1 10.9 19.03 3.9 6.6 7.8

PSI 2 18.9 15.11 4.9 10.0 11.5

PSI 3 1.5 1.31 0.07 6.9 3.8

SCK.CEN 7.0 0.58 4.7 1.8 0.05



Table 3 Activity of 47Sc at the time of separation (A(47Sc)), comparison of the calculated and
measured 47Sc saturation yield (A(47Sc)calc and A(47Sc)meas) and of the optimal and measured
relative 47Sc activity (a(47Sc)opt and a(47Sc)meas) after irradiation with thermal neutrons at ILL
(irradiations ILL 1–5) and BR2 (irradiation SCK.CEN)

Irradiation tirr [d] twait [d] topt [d] m(46Ca)
[mg]

A(47Sc) at
separation
[MBq]

A(47Sc)calc A(47Sc)meas a(47Sc)opt a(47Sc)meas f(47Sc)

[MBq/mg 46Ca 10−13 n
cm−2 s−1]

ILL 1 7.0 6.7 2.8 0.17 690 92 86 0.43 0.34 0.65

ILL 2 7.2 6.7 2.7 0.35 1390 92 85 0.44 0.34 0.66

ILL 3 8.4 12.5 2.4 0.14 470 92 98 0.50 0.25 0.69

ILL 4 11.0 6.9 1.8 0.35 2140 92 95 0.62 0.49 0.76

ILL 5 7.0 6.8 2.8 0.35 1440 92 93 0.43 0.37 0.65

SCK.CEN 7.0 3.0 2.8 0.17 200 92 90 0.43 0.42 0.65
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The measured relative 47Sc activities (a(47Sc)meas) of the irradiations ILL 1, ILL 5 and

SCK.CEN are represented by single data points in Fig. 3. After an optimal post irradi-

ation waiting time (topt) of 2.8 days, the relative 47Sc activity (a(47Sc)opt) reaches the

maximum with 0.43. The separations ILL 1 and ILL 5 were performed after waiting

times of 6.7 and 6.8 days, resulting in lower relative 47Sc activities of 0.34 and 0.37, re-

spectively. The waiting time after the irradiation at SCK.CEN (3.0 days) is close to topt,

thus the obtained relative 47Sc activity of 0.44 is comparable with the optimum value.
Separation of 47Sc from 46Ca and 47Ca

After the ampoule was crushed, it was moved to the hot cell containing the production

panel (Fig. 2), where the target material was dissolved by repeated application of 6.5 mL

3.0 M HCl. The 47Ca and 47Sc activity was transferred from the crushed glass ampoule to

the DGA column, leaving only 1.1 ± 0.5% 47Ca and 3.3 ± 0.4% 47Sc attached to the glass.

Direct application of 2 mL 3.0 M HCl quantitatively removed the Ca (47Ca and stable Ca

isotopes) from the resin. The collected Ca fraction contained 99.8 ± 0.2% of the total 47Ca

activity. The 47Sc activity was eluted from the DGA column with 4 mL 0.1 M HCl and
Fig. 3 The relative 47Sc activities (a(47Sc)meas) of the irradiations ILL 1, ILL 5 and SCK.CEN accessible (and
measured) at the time of separation (single data points). The activation functions of 47Sc and 47Ca at an
irradiation period of 7.0 days (solid blue and red line) and their subsequent decay functions after the EOI
(dashed blue and red line) are calculated for the respective irradiations
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only 1.5 ± 0.6% of the 47Sc activity remained on the column. Using Method A, the

solution was concentrated on the SCX cation exchange resin (used as the second

column) and eluted with 700 μL 4.8 M NaCl/0.1 M HCl solution (pH 0–0.5), col-

lecting 94.8 ± 2.1% of the total 47Sc activity. When using Method B, the molarity of

the 47Sc eluate was increased from 0.1 to 3.0 M HCl and the resulting solution

adsorbed on a second smaller DGA column and eluted with 1.7 mL 0.05 M HCl.

Fractionized collection revealed that about ~90% of the eluted 47Sc activity was ob-

tained in the first 700 μL (pH ~0).

With the installation of the chemical separation system in a hot cell, yields of up to

1.9 GBq 47Sc could be isolated from the irradiated 46Ca target. The renewed generation

of 47Sc from the β−-decay of 47Ca (T1/2 = 4.54 d) in the Ca-containing fraction, reached

the maximum 47Sc activity after an in-growth period of 5.6 days (Fig. 4) and, thus, en-

abled repeated separations. As a result of experimental conditions, separations were

performed after an in-growth time of 3–7 days. The separation process was successfully

repeated 2–4 times, until the eluted 47Sc activity was ~100 MBq.
Radionuclidic purity of 47Sc produced from 46Ca via (n,γ) reaction

The γ-ray spectrum of the neutron-irradiated 46Ca target material (Additional file 1:

Figure S2a) showed, exclusively, the γ-lines of 47Sc (159 keV) and the parent nuclide
47Ca (489, 808 and 1297 keV). After chemical separation and concentration of 47Sc on

SCX resin (Method A), the radionuclidic purity of the final 47Sc eluate was 99.6 ± 0.7%.

When the second DGA column (Method B) was used, the radionuclidic purity in-

creased to 99.99 ± 0.03% (Additional file 1: Figure S2b). The long-lived radionuclidic

impurity 46Sc was only present in the eluate obtained from the first separation at a

maximum of 0.005% and could be only detected by performing long-term γ-

spectrometry measurements several days post separation. The isolated 47Sc which was

generated by the decay of 47Ca in the Ca-containing fraction did not contain any 46Sc,

due to its entire removal within the first separation.
Fig. 4 The radioactive decay of the parent nuclide 47Ca (T1/2 = 4.54 d) to the daughter nuclide 47Sc (T1/2 = 3.35 d)
reaches the maximum of 47Sc activity after 135 h (5.6 d). The grey-shaded area indicates the time frame wherein the
next separation was performed
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Radiolabeling and stability of 47Sc labeled DOTANOC

Radiolabeling of 47Sc was reproducible at a specific activity of 10 MBq 47Sc per nmol

DOTANOC, with >96% radiochemical purity. Depending on the activity concentration

of the 47Sc solution, it was also possible to label at higher specific activity of up to

25 MBq/nmol.

The stability of 47Sc-labeled DOTANOC in PBS (pH 7.4) was investigated over a

period of 3 days and compared to the stability of the 177Lu-labeled analogue (Fig. 5).

Directly after the radiosynthesis of 47Sc with DOTANOC, the amount of intact radiola-

beled product was 96.6–99.0% with less than 2% of radiolysis products visible as

pre-peaks on the HPLC chromatogram. After 1 day at room temperature, the amount

of intact radiolabeled 47Sc-DOTANOC decreased to 81.3%, while 18.3% were subjected

to radiolysis. Over the whole investigation period of 3 days, the percentage of radiolysis

products increased to 44.4%, however, the amount of free 47Sc was always below 2.1%.

The stability of 47Sc-labeled DOTANOC was found to be comparable with the

clinically-used analogue 177Lu-DOTANOC. After 3 days, the amount of intact 47Sc-

DOTANOC (54.1%) was similar to the amount of intact 177Lu-DOTANOC (43.2%).
Imaging with 47Sc-DOTANOC in comparison to 44Sc-DOTANOC and 177Lu-DOTANOC

SPECT/CT experiments performed with AR42J tumor-bearing mice allowed excellent

visualization of the accumulated 47Sc-DOTANOC in tumor xenografts, which express

the somatostatin receptor (Fig. 6a). Activity accumulation was also observed in the kid-

neys, which was due to renal excretion of the radiopeptide. The SPECT/CT image

obtained with 47Sc-DOTANOC showed an equal activity distribution profile as was

previously demonstrated by a PET/CT scan of an AR42J tumor-bearing mouse 3 h after

injection of 44Sc-DOTANOC (Fig. 6b) (Domnanich et al. 2016).

To compare the image quality of 47Sc with the clinically-employed 177Lu, mice with

AR42J tumors were injected with either 47Sc- or 177Lu-labeled DOTANOC and

scanned 6 h after injection (Fig. 7). Both images visualized the uptake of the radiopep-

tides in tumor xenografts located on each shoulder of the mouse and in the kidneys.
Fig. 5 Stability of 47Sc-DOTANOC (a) and the comparison of the stability of 47Sc- and 177Lu-DOTANOC (b) in PBS
(pH 7.4) investigated at room temperature over a 3-day period after radiolabeling. The retention times of free 47Sc
and 177Lu are 2.2 ± 0.1 min and for 47Sc- and 177Lu-DOTANOC 9.5 ± 0.1 min and 9.3 ± 0.2 min, respectively



Fig. 6 In vivo SPECT/CT scan of a tumor-bearing mouse 3 h after injection of 47Sc-DOTANOC (~12 MBq,
~1.2 nmol) (a). In vivo PET/CT scan of a tumor-bearing mouse 3 h after injection. 44Sc-DOTANOC (~10 MBq,
~1 nmol), image reproduced from Domnanich et al. 2016 (Domnanich et al. 2016) (b). The scan durations
were 35 min and 20 min, respectively (Tu = AR42J tumor xenograft, Ki = kidney, Bl = urinary bladder)
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The distribution pattern was equal for both radiopeptides, as expected, based on similar

coordination of 47Sc and 177Lu when using DOTA.

Discussion
Recently, the use of 47Sc for therapeutic purposes, as part of the 44Sc/47Sc theragnostic

radionuclide pair, has attracted considerable attention in the field of nuclear medicine

(Rösch and Baum 2011). In the present study we report, to our knowledge, the first re-

producible production of MBq to GBq activities of 47Sc by the irradiation of enriched
46Ca target material with thermal neutrons. Concurrently, an alternative production

route was investigated, using 47Ti as target material and, by irradiation with fast neu-

trons, 47Sc was formed via the (n,p) nuclear reaction. Irradiation of enriched 47Ti at the

spallation source SINQ (PSI, Switzerland) and the BR2 reactor (SCK.CEN, Mol,

Belgium) resulted in the formation of 1.8–10.0 MBq 47Sc/mg 47Ti 10−13 n cm−2 s−1.

The production of 47Sc by neutron irradiation of enriched 47Ti target material was per-

formed previously by Mausner and Kolsky in the fission neutron spectrum of the HFIR

reactor in Oak Ridge National Laboratory (ORNL) and Brookhaven National Labora-

tory (BNL) (Kolsky et al. 1998, Mausner, Kolsky et al. 1998) and by Bartoś et al. at the

Maria reactor in Świerk, Poland (Bartoś et al. 2012). The reported activity of produced
47Sc was within the range of 1.4–4.2 MBq 47Sc/mg 47Ti 10−13 n cm−2 s−1, which is

comparable with the 47Sc radioactivity obtained in our experiment at BR2. The irradia-

tions at SINQ generated higher 47Sc activities, due to the larger proportion of fast neu-

trons (> 1 MeV) at the spallation source (Lehmann 2016) than at the reactor



Fig. 7 Post-mortem SPECT/CT scans of tumor-bearing mice 6 h after injection of the corresponding radiopeptide.
Mouse injected with 47Sc-DOTANOC (~12 MBq, ~1.2 nmol) (a) and mouse injected with 177Lu-DOTANOC (~40 MBq,
~1.2 nmol) (b). The scan durations were 3.5 h and 1.3 h, respectively. (Tu = AR42J tumor xenograft, Ki = kidney)
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(Chrysanthopoulou et al. 2014). The production of 85–98 MBq 47Sc/mg 46Ca 10−13 n

cm−2 s−1 was feasible via the 46Ca(n,γ)47Ca→ 47Sc route with thermal neutrons from

nuclear reactors at ILL and BR2, however. The nearly ten-fold higher accessible
47Sc activity from 46Ca irradiations can be attributed to the higher nuclear cross sec-

tion of the 46Ca(n,γ)47Ca reaction (σ = 0.7 barn) (Magill et al. 2015) in comparison

to the 47Ti(n,p)47Sc nuclear reaction (Additional file 1: Figure S4), as well as to an

increased flux of thermal neutrons in comparison to fast neutrons. Lower measured

relative 47Sc activities than the optimal activities were obtained for the irradiations

ILL 1–ILL 5, because the post-irradiation waiting period was too long and the built

up 47Sc already started to decay. Shorter waiting periods were prevented due to lo-

gistical issues. The waiting period after the irradiation at SCK.CEN, however, was

close to the optimum time period, thus the measured relative 47Sc activity obtained

from the irradiation at SCK.CEN is in good correlation with the optimal value.

γ-spectra of the irradiated 46Ca indicated the presence of 47Ca and 47Sc, however, due

to high dead time a precise determination of both activities before separation was not

possible. After chemical separation a product of high radionuclidic purity, containing

only 0.005% 46Sc, was obtained (Additional file 1: Figure S2). The acquired radionuclide

inventory of 47Ti targets, neutron irradiated at the spallation source SINQ, indicated a

higher percentage of 46Sc (Additional file 1: Figure S3), which increased proportionally

with irradiation time (3.8–11.5% 46Sc for 1.5–18.9 days irradiation), whereas a signifi-

cantly smaller amount of 46Sc (0.05%) was produced after 7 days of irradiation at the

BR2 reactor (SCK.CEN). Trace activities of 122Sb and 124Sb were identified in the γ-ray

spectrum of the irradiated 47Ti ampoule at SINQ (Additional file 1: Figure S3),

conceivably produced by neutron activation reactions on natural Sb impurities

(Additional file 1: Table S5). The presence of 22Na and 7Be can be attributed to
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spallation reactions with the capsulation material. The scan for trace metals re-

vealed impurities of Ca, Sr, Sb and Zr in the reduced 47Ti metal (Additional file 1:

Table S5), which were probably introduced by the reduction process. Neutron acti-

vation reactions were only observed with Sb, but not with any of the other deter-

mined impurities, however.

The formation of 46Sc from 47Ti via the 47Ti(n,n + p)46Sc nuclear reaction is

known to be only induced by very fast neutrons above the threshold of 10.7 MeV

(Additional file 1: Figure S4) (Zerkin 2016). The considerably decreased 46Sc impur-

ity of the sample irradiated at the BR2 reactor can, therefore, be attributed to the

lower proportion of very energetic neutrons in the fission spectrum of the BR2 re-

actor (Chrysanthopoulou et al. 2014), compared to the spallation neutron spectrum

in the SINQ (Lehmann 2016). The percentage of 46Sc obtained from the 47Ti irradi-

ation at the BR2 reactor was in agreement with those from previous experiments at

ORNL, BNL and the Maria reactor, which was reported to be 0.06–0.64% 46Sc

(Kolsky et al. 1998; Mausner et al. 1998; Bartoś et al. 2012). With respect to radio-

pharmaceutical applications, the ten-fold higher 47Sc production from 46Ca targets,

together with the absence of long-lived radionuclidic impurities, intensified our re-

search towards the further development of the more attractive 46Ca route.

In order to meet the requirements for radiopharmaceutical applications, the obtained
47Sc eluate needed to be of high chemical purity and concentrated into a small volume of

moderately acidic eluate to facilitate efficient radiolabeling and subsequent in vivo applica-

tion. Initially, SCX cation exchange resin (Method A) was used and 94.8% ± 2.1% of the

total 47Sc activity was recovered in only 700 μL eluate (4.8 M NaCl/0.1 M HCl). The use

of this resin is already established for the concentration of the 68Ga eluate from the 68Ge

generator (Mueller et al. 2013); however, direct preclinical in vivo application is not

feasible due to the high osmolarity of the obtained eluate. In a modification of the separ-

ation procedure, a second, smaller DGA column was used (Method B), allowing the

elution of ~90% using 700 μL 0.05 M HCl. This enabled labeling and preclinical applica-

tion as previously shown with 44Sc (Domnanich et al. 2016).

The labeling of DOTANOC with 47Sc was performed to verify a consistent chemical

purity of the obtained eluate. Our results demonstrated reproducible radiosynthesis of
47Sc-DOTANOC at specific activities of 10 MBq/nmol, whereas radiolabeling at

25 MBq/nmol proved possible. The obtained results indicated good quality of the

produced 47Sc achieving radiolabeling yields, in agreement with the previously-

performed 47Sc-radiolabeling of a DOTA-folate conjugate (Müller et al. 2014a).

In PBS 47Sc remained stably coordinated by the DOTA-chelator over 3 days (<6% release),

a result which was comparable to the 177Lu-labeled peptide. 47Sc- and 177Lu-DOTANOC

were, however, affected by radiolytic decomposition, which decreased the amount of intact

product over time. It is likely the radiolytic stability could be enhanced by the addition of

radical scavengers, such as ascorbic or gentisic acids, which were previously successfully

employed for the stabilization of 90Y- and 177Lu-labeled DOTA-peptides (Liu and Edwards

2001; Liu et al. 2003).

In a proof-of-concept study, 47Sc-DOTANOC was utilized for SPECT/CT imaging of

AR42J tumor-bearing mice. The equal distribution profile of 47Sc-DOTANOC and
44Sc-DOTANOC, previously demonstrated using PET/CT, demonstrated the successful

realization of the “matched pair” principle using scandium radionuclides. Moreover, the
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in vivo distribution of 47Sc-DOTANOC was comparable to 177Lu-DOTANOC. Due to

the higher percentage of emitted γ-radiation in the case of 47Sc, it is expected that less

activity of 47Sc-labeled compounds would be necessary for clinical SPECT as compared

to the activity necessary for 177Lu-labeled counterparts.
Conclusions
The reproducible production of activities of up to 2 GBq 47Sc at high radionuclidic

purity via the 46Ca(n,γ)47Ca nuclear reaction in the thermal neutron flux of a reactor

was demonstrated. The subsequent decay of 47Ca to 47Sc creates a “pseudo-generator”

system, which enables the repeated separation of the 47Sc daughter nuclide from the
47Ca parent nuclide. Together with the high radionuclidic purity and the superior yield

of the isolated 47Sc activity, the 46Ca production route bears significant advantages over

the 47Ti production route with fast neutrons. Even though the high price of enriched
46Ca represents a drawback, implementation of a suitable recovery method will limit

the expenses. Based on the results obtained from this proof-of-concept study, 47Sc has

the potential to be produced in a suitable quality for clinical applications, however, the

quantity of radioactivity still needs to be expanded to meet the requirements for radio-

nuclide therapy.

Additional file

Additional file 1: Figure S1a. Formula for the calculation of the 47Sc activity in Bq (s−1), accessible under the
applied irradiation conditions. σ = nuclear cross section of the 46Ca(n,γ)47Ca reaction in cm−2, NT = number of 46Ca
atoms, Φth = thermal neutron flux in n * cm−2 * s−1, λSc and λCa = decay constants of 47Sc and 47Ca in s−1, tirr =
irradiation time and twait = post irradiation waiting time in s. b Formula for the calculation of the optimal post
irradiation waiting time (topt) in s, accessible at the applied irradiation time (tirr in s). The decay constants of 47Sc
(λSc) and 47Ca (λCa) are given in s−1. c Formula for the calculation of the optimal relative 47Sc activity (a(47Sc)opt)
(dimensionless), accessible under the applied irradiation conditions. σ = nuclear cross section of the 46Ca(n,γ)47Ca
reaction in cm−2, NT = number of 46Ca atoms, Φth = thermal neutron flux in n * cm−2 * s−1, λSc and λCa = decay
constants of 47Sc and 47Ca in s−1. d Formula for the maximal obtainable 47Sc activity (dimensionless). The
irradiation time (tirr) is given in s and the decay constants of 47Sc (λSc) and 47Ca (λCa) in s−1. Figure S2. γ-Ray spectra
of 47Sc and 47Ca from the neutron-irradiated 46Ca ampoule, obtained 71 h after the end of irradiation (measurement
time: 10 s) (a) and of the pure 47Sc eluate after separation (Method B), obtained 1 h after the end of separation
(measurement time: 250 s) (b). Figure S3. γ-Ray spectrum of the neutron-irradiated 47Ti ampoule at SINQ, obtained 21
d after the end of irradiation (measurement time: 9600 s). Figure S4. Measured cross section values (squares, retrieved
from the EXFOR-database) (Zerkin 2016) as well as the theoretical calculations from the TENDL-2015 library (straight
line) (Koning, Rochman et al. 2015) for the 47Ti(n,p)47Sc (blue) and the 47Ti(n,p + n)46Sc (black) nuclear reactions.
Table S5. Trace metal analysis of the reduced 46Ti metal by ICP-OES. Only the elements determined at a concentration
higher than the detection limit are listed below. (DOCX 415 kb)
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