
Ooms et al. EJNMMI Radiopharmacy
and Chemistry  (2016) 1:3 
DOI 10.1186/s41181-016-0005-5
RESEARCH Open Access
Striatal phosphodiesterase 10A availability
is altered secondary to chronic changes in
dopamine neurotransmission

Maarten Ooms1 , Sofie Celen1, Ronald De Hoogt2, Ilse Lenaerts2, Johnny Liebregts2, Greet Vanhoof2,
Xavier Langlois2, Andrey Postnov3, Michel Koole3, Alfons Verbruggen1, Koen Van Laere3 and Guy Bormans1*
* Correspondence:
guy.bormans@pharm.kuleuven.be
1Department of Pharmaceutical and
Pharmacological Sciences KU
Leuven, Laboratory for
Radiopharmacy, Campus
Gasthuisberg O&N 2, Herestraat 49
bus 821, 3000 Leuven, Belgium
Full list of author information is
available at the end of the article
©
L
p
i

Abstract

Background: Phosphodiesterase 10A (PDE10A) is an important regulator of
nigrostriatal dopamine (DA) neurotransmission. However, little is known on the
effect of alterations in DA neurotransmission on PDE10A availability. Here, we used
[18F]JNJ42259152 PET to measure changes in PDE10A availability, secondary to
pharmacological alterations in DA release and to investigate whether these are D1- or
D2-receptor driven.

Results: Acute treatment of rats using D-amphetamine (5 mg, s.c. and 1 mg/kg i.v.)
did not result in a significant change in PDE10A BPND compared to baseline
conditions. 5-day D-amphetamine treatment (5 mg/kg, s.c.) increased striatal
PDE10A BPND compared to the baseline (+24 %, p = 0.03). Treatment with the
selective D2 antagonist SCH23390 (1 mg/kg) and D-amphetamine decreased
PDE10A binding (-22 %, p = 0.03). Treatment with only SCH23390 further decreased
PDE10A binding (-26 %, p = 0.03). No significant alterations in PDE10A mRNA levels
were observed.

Conclusions: Repeated D-amphetamine treatment significantly increased PDE10A
binding, which is not observed upon selective D1 receptor blocking. This study
suggests a potential pharmacological interaction between PDE10A enzymes and
drugs modifying DA neurotransmission. Therefore, PDE10A binding in patients
with neuropsychiatric disorders might be modulated by chronic DA-related
treatment.

Keywords: Phosphodiesterase 10A, Dopamine neurotransmission, D-amphetamine,
Small animal PET, Brain imaging
Background
Dopamine (DA) is an important neurotransmitter in the brain and in particular in the

striatum, which is the primary input of the basal ganglia. DA neurotransmission plays

an important role in the regulation of motor, reward and cognitive processes. Alter-

ations in DA neurotransmission are key hallmarks in the pathogenesis of several

diseases in these domains such as Huntington’s disease, Parkinson’s disease, addiction

and schizophrenia (Schmidt and Reith 2010).

Medium spiny neurons (MSNs) represent 90–95 % of the neurons in striatum. MSNs

are GABAergic projection neurons that integrate dopaminergic and glutamatergic
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neurotransmission. Two major pathways of MSNs are known. MSNs of the direct

pathway are striatonigral neurons that project to the internal part of the globus

pallidus and the substantia nigra pars reticularis. Activation of the direct pathway

inhibits the GABAergic output of these two nuclei on the thalamus and thereby

stimulates behavioral activity. The indirect pathway consists of striatopallidal MSNs

that project to the external globus pallidus. Activation of the indirect pathway

removes the inhibition of the external globus pallidus on the subthalamic nucleus.

This ultimately increases the inhibition of the globus pallidus and substantia nigra

on the thalamus and inhibits behavioral activity (Albin et al. 1989).

In the MSNs, two main DA receptor pathways can be distinguished. Both the

D1 receptor and the D2 receptor mediate their effects through activation or in-

activation of the 3’,5’-cyclic adenosine monophosphate/Protein Kinase A (cAMP/

PKA) pathway (Nishi et al. 2008). Although all MSNs are sensitive to DA neuro-

transmission, a distinct distribution pattern of the DA receptor subtypes exists.

Striatonigral MSNs of the direct pathway predominantly express the D1 receptor.

When stimulated, D1 receptors activate adenylyl cyclase (AC) which initiates the

cAMP/PKA cascade. Striatopallidal neurons on the other hand predominantly

express D2 receptors. Stimulation of these Gi mediated receptors inhibits AC

resulting in an inactivation of the indirect pathway (Fisone et al. 2007; Traynor

and Neubig 2005).

Since striatal excitability depends on activation or inactivation of the cAMP/PKA

pathway, concentrations of cAMP play a central role in the regulation of the MSNs.

The intracellular concentration of cAMP is determined by the balance between its pro-

duction and its degradation. Production of cAMP in striatum is controlled by activation

of AC while the degradation of cAMP is catalyzed by a class of enzymes called phos-

phodiesterases (PDEs).

PDE10A is a subfamily of PDEs which can hydrolyze both cAMP and cGMP, al-

though its affinity for cAMP is higher (Fujishige et al. 1999). It has a very limited distri-

bution and is mainly expressed in the MSNs of the striatum and substantia nigra

(Lakics et al. 2010; Seeger et al. 2003). The role of PDE10A in cAMP metabolism, to-

gether with its unique localization makes PDE10A a principal regulator of nigrostriatal

DA neurotransmission.

Several research groups have focused on the relationship between PDE10A activ-

ity and cAMP levels. Research conducted by Jäger et al. suggested that PDE10A is

activated by high concentrations of cAMP (Jäger et al. 2012). Since changes in DA

neurotransmission directly influence cAMP levels in striatum, it is plausible that

changes in DA neurotransmission might also induce changes in PDE10A activity.

Although several authors have investigated how PDE10A inhibition may modify

DA neurotransmission (Nishi et al. 2008; Sotty et al. 2009; Gresack et al. 2013), to

our knowledge, few studies have examined the modulation of PDE10A expression

and activity by DA neurotransmission.

Dlaboga et al were the first to investigate the effect a chronic treatment with a D2

antagonist on PDE10A expression levels (Dlaboga et al. 2008). They noticed de-

creased PDE10A expression after chronic treatment with haloperidol. These data

were later contradicted by Natesan et al., who could not detect any change in

PDE10A expression and PET binding after chronic haloperidol treatment (Natesan
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et al. 2014). Finally, an attempt to understand the relationship between DA neuron-

transmission and PDE10A was done by Giorgi et al. (Giorgi et al. 2011). They no-

ticed that loss of dopaminergic nigrostriatal neurons significantly decreased PDE10A

mRNA levels in striatum.

These studies suggest that changes in DA neurotransmission might induce

changes in cAMP levels and PDE10A expression. This is however still controver-

sial. In this study we aimed to evaluate changes in PDE10A activation or expres-

sion secondary to changes in DA neurotransmission. In order to test this

hypothesis, we used positron emission tomography (PET) with [18F]JNJ42259152, a

validated PET tracer for PDE10A (Celen et al. 2013; Van Laere et al. 2013a, b;

Andrés et al. 2011), to quantify in vivo alterations in PDE10A binding secondary to

stimulation of the DA system. Since D1 and D2 receptors influence cAMP levels in

opposite ways, we evaluated the relative importance of D1 and D2 receptors in such

response to DA alterations, using various pharmacological treatment schedules and

imaging with the D2 antagonist [
11C]raclopride.
Methods
Animals

Healthy female Wistar rats (body weight of 200–250 g at start of experiments) were

used. The animals were housed in individually ventilated cages in a thermoregulated

(22 °C) and humidity-controlled environment under a 12 h/12 h day/night cycle with

free access to food and water. All animal experiments were conducted according to the

Belgian code of practice for the care and use of animals and with approval of the

KU Leuven ethical committee for animal experiments.
Animal treatment

Rats were divided into eight different treatment groups which are outlined in Table 1.

Single-dose treatment

At the start of the experiment, animals were scanned using [18F]JNJ42259152 prior to any

treatment to asses baseline BPND values. In order to evaluate the acute, single-dose effects

of D-amphetamine administration on PDE10A, rats were treated with D-amphetamine

(5 mg/kg, solution 2.5 mg/ml in saline, s.c. in awake animals) and were scanned with
Table 1 Overview of the different treatment groups (* saline treatment, equivalent volumes)

Experiment Treatment Injection route Dose
(mg/kg)

Duration of
treatment

Time before
scan

n

1 Amphetamine SC 5 Acute 60 min 6

2 Amphetamine IV 1 Acute 5 min 5

3 Saline (test/retest) SC * Acute 60 min 3

4 Saline (test/retest) IV * Acute 5 min 3

5 Amphetamine SC 5 5 days 4 h 5

6 Amphetamine+ SCH23390 SC 51 5 days 4 h 6

7 SCH23390 SC 1 5 days 4 h 5

8 Saline SC * 5 days 4 h 3

Rats undergoing acute treatment were scanned at baseline conditions and after acute treatment. The 5 day treatment
consisted of a baseline scan, a scan immediately after the 5 day treatment and a scan 10 days after the last treatment
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[18F]JNJ42259152 60 min after D-amphetamine injection (Experiment 1; n = 6). A second

group of rats (Experiment 2; n = 5) was scanned 5 min after D-amphetamine treatment

(1 mg/kg, i.v. in anaesthetized rats). Striatum BPND values for [18F]JNJ42259152 after

treatment were compared to baseline BPND values acquired in the same rat. A similar

treatment protocol with saline (2 ml/kg, s.c.) was used as a control to check for the poten-

tial effect of stress induced by the acute treatment protocols. Additionally, scans in saline

treated animals were also used to calculate the test-retest variability of basal BPND values

as a function of time (Experiments 3 and 4; n = 3 per group). Test-retest variability was

calculated as |BP1 – BP2| / (BP1 + BP2) × 200 with BP1 and BP2 the BPND values from the

baseline and saline treated scan respectively acquired in the same animal. For all experi-

ments, there was a maximum time-gap of 1 week between baseline scan and test scan.

Chronic treatment

The effect of chronic dosage with D-amphetamine was evaluated after a 5-day schedule.

In order to evaluate the relative contribution of D1 versus D2 receptors in the D-

amphetamine response, rats were also treated with SCH23390, a known D1 receptor

antagonist (Bourne 2001). All rats were first scanned at baseline conditions prior to any

treatment using [18F]JNJ42259152. After their baseline scans, the different groups of

animals were subjected to different treatment protocols (See Table 1). The treatment

protocol consisted of subcutaneous injection in awake animals for five consecutive days

with 5 mg/kg D-amphetamine (Experiment 5; n = 5), a combination of 5 mg/kg D-

amphetamine and 1 mg/kg SCH23390 (Experiment 6; n = 6) or 1 mg/kg SCH23390

alone (Experiment 7; n = 5) once per day. At the fifth day of treatment, rats were

scanned using [18F]JNJ42259152. A time gap of 4 h was left between the final injection

and the start of the microPET scan in order to exclude any potential acute effects of the

treatment. Finally, the rats were left untreated for another ten days after which the

PDE10A binding potentials were again determined. A subset of the animals treated with

only D-amphetamine (Experiment 5; n = 3) was additionally scanned with [11C]raclopride

to visualize D2-receptor availability at the same time points. The influence of the chronic

D-amphetamine treatment on PDE10A BPND values was assessed in a control group of

rats treated for 5 consecutive days with equivalent volumes (2 ml/kg) of saline (Experi-

ment 8; n = 3).
Radiochemistry

[18F]JNJ42259152 was radiolabeled by alkylation of the corresponding precursor with

[18F]fluoroethyl bromide following a previously published method (Andrés et al. 2011).

The radiotracer was obtained with a radiochemical purity > 98 % and a specific activity

of 62–193 GBq/μmol (injected mass dose = 0.3–9 μg/kg) at the time of injection.

[11C]Raclopride was synthesized according to a previously published method (Van

Laere et al. 2010) with a radiochemical purity >98 % and a specific activity of 103–

120 GBq/μmol (injected mass dose = 0.3–1.1 μg/kg) at time of injection.
Small animal PET imaging

Small animal PET imaging was performed with a FOCUS 220 tomograph (Siemens/

Concorde Microsystems, Knoxville, TN). Rats were anesthetized and kept under

anesthesia during the entire scan using 2.5 % isoflurane in oxygen (1 L/min). Animals
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were injected intravenously with about 50 MBq of [18F]JNJ42259152 or about 70 MBq of

[11C]raclopride and scanned dynamically for 90 min. Data were acquired in a 128x128x95

matrix with a pixel width of 0.949 mm and a slice thickness of 0.796 mm. The scan data

were acquired in list mode. Acquisition data were Fourier re-binned in 24 time frames (4

× 15 s, 4 × 60 s, 5 × 180 s, 8 × 5 min, 3 × 10 min) and reconstructed using maximum a

posteriori iterative reconstruction (MAP; 18 iterations, 9 subsets, fixed resolution:

1.5 mm). The summed images (all timeframes) of the reconstructed data were spatially

normalized to an in-house created [11C]raclopride template of the Wistar rat brain. The

affine transformation was then used to normalize all time frames of the dynamic small ani-

mal PET data set to allow automated and symmetric volumes of interest (VOIs) analyses.

Time activity curves (TACs) were generated for striatum and cerebellum using PMOD

software (v 3.2, PMOD Technologies, Zurich, Switzerland). For [18F]JNJ42259152, striatal

binding potential values (BPND) in striatum were extracted from the TACs using a Logan

reference plot as previously validated by Celen and coworkers (Celen et al. 2013). K2’ and

t* values for the Logan reference analysis were estimated using a two-tissue reference

model. [11C]Raclopride binding was quantified using BPND values derived from a simpli-

fied reference tissue model as previously described (Ikoma et al. 2009). Cerebellum was

used as a reference region for both reference tissue models to quantify [18F]JNJ42259152

and [11C]raclopride binding in different brain regions. PDE10A BPND images were gener-

ated by voxel based parametric mapping. Voxelwise parametric BPND images were con-

structed using a Logan reference tissue model using the cerebellum as reference region.

For [11C]Raclopride, BPND images were generated using a SRTM approach.
Quantitative analysis of striatal mRNA levels

Tissue extraction

Healthy female Wistar rats were treated for five consecutive days with D-amphetamine

(n = 9, 5 mg/kg, s.c.) or equivalent volumes of saline (n = 9). At the final day of treat-

ment, rats were anaesthetized using 2.5 % isoflurane in oxygen (1 L/min) and sacrificed

by decapitation. Striatum was then isolated and used for mRNA quantification.

Real-time quantitative PCR

RNA purification from striatum was performed with an RNeasy kit (Qiagen, Hilden,

Germany), including DNaseI digestion, and extracted RNA was eluted with RNase-free

H2O. 1.2 μg RNA was used for subsequent cDNA synthesis using random primers and

SuperScript® III First-Strand Synthesis System (Invitrogen, Carlsbad, US) according to

manufacturer’s protocol.

Real-Time Quantitative PCR (RTQ-PCR) was performed on an ABI Prism 7900-HT

Sequence Detection System (Applied Biosystems, Lennik, Belgium). A qPCR core kit

without dUTP (Eurogentec, Seraing, Belgium) was combined, according to protocol,

with pre-designed Taqman Gene Expression Assays (Applied Biosystems) to quantify

the genes of interest; PDE10A (Rn00673152_m1), D1 receptor (Rn03062203_s1) and D2

receptor (Rn00561126_m1) and internal control genes corresponding to glucuronidase

b (GUSB, Rn00566655_m1), hydroxymethylbilane synthase (HMBS, Rn00565886_m1),

phosphoglycerate kinase 1 (PGK1, Rn00821429_g1), peptidylpropyl isomerase b (PPIB,

Rn03302274_m1) and transferrin receptor (TFRC, Rn01474701_m1, all Applied Biosys-

tems). Serial dilutions of cDNA were used to generate standard curves with all Taqman
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assays in order to calculate PCR efficiencies (all between 95 % and 105 %) and quantify

expression levels. Samples were assessed in duplicate. Finally GeNorm software was

used to identify the most stably expressed internal control genes (http://genomebiolo-

gy.com/2002/3/7/research/0034). These genes were then used to normalize PDE10A,

D1 and D2 receptor expression.
General statistics

Reported values are reported as mean ± SD. Conventional statistical analysis was carried

out using Graphpad Prism 5.1 (Graphpad Software, La Jolla, CA, US). A non-parametric

Wilcoxon signed rank test was performed to compare BPND values at the different time

points in each treatment group. Significance was accepted at the 95 % probability level.
Results
Saline treated animals

In order to test the effect of treatment protocols on PDE10A BPND values, rats were

treated with equivalent volumes of saline (Experiments 3, 4 and 8). When comparing

PDE10A BPND values after acute saline treatment (average BPND = 1.40 ± 0.20) and at

baseline conditions (BPND = 1.61 ± 0.11), no significant changes could be found (Table 2).

Additionally, the same BPND values derived from the acute saline treatment rats were

used to calculate test-retest variability as described earlier. Individual and average test-

retest variability are shown in Table 2. Likewise, in the chronically saline-treated animals

(Experiment 8) no significant changes could be detected (BPND = 2.61 ± 0.45; 2.51 ± 0.13;

2.27 ± 0.61 at baseline, day 5 and day 15 of the experiment respectively).
Single dose D-amphetamine treatment

Representative images of PDE10A BPND values for [18F]JNJ42259152 in the brain ac-

quired at baseline conditions and after single dose treatment with D-amphetamine are

presented in Fig. 1a-b. Single dose treatment with D-amphetamine did not influence

striatal PDE10A binding. Quantification of BPND values in experiment 1 showed no

change in PDE10A BPND between baseline conditions (BPND = 2.20 ± 0.51) and 60 min

after subcutaneous administration of D-amphetamine (BPND = 1.95 ± 0.39, Fig. 1c)).

Similarly, the rats of experiment 2 did not have significantly different BPND 5 min after

i.v. D-amphetamine injection (BPND = 1.82 ± 0.42) compared to baseline conditions

(BPND = 1.98 ± 0.33; Fig. 1d).
Table 2 Test-retest statistics for [18F]JNJ42259152 in rat striatum

Animal BP1 (baseline) BP2 (saline treated) Test-retest variability (%)

1 1.71 1.21 34.8

2 1.48 1.53 2.5

3 1.58 1.22 25.9

4 1.51 1.69 10.4

5 1.62 1.24 26.3

6 1.69 1.51 11.9

Mean ± SD 1,60 ± 0.09 1.40 ± 0.20 18.6 ± 12.2

Test retest variability was calculated as |BP1 – BP2| / (BP1 + BP2) × 200

http://genomebiology.com/2002/3/7/research/0034
http://genomebiology.com/2002/3/7/research/0034


Fig. 1 [18F]JNJ42259152 BPND values after acute amphetamine treatment. Left: Transversal images of
PDE10A binding in the brain at baseline conditions vs 60 min after s.c. amphetamine treatment (a) and at
baseline conditions vs 5 min after i.v. amphetamine treatment (b). Images are overlaid on a VOI map and
presented as averaged, parametric BPND images (Logan Reference) at baseline conditions and amphetamine
treated conditions. Right: Comparison of BPND in striatum at baseline conditions and 1 h after subcutaneous
injection of amphetamine (c) and 5 min after intravenous injection of amphetamine (d). No significant
difference was found
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Chronic treatment

Five day D-amphetamine treatment (Experiment 5)

After treatment with D-amphetamine for five consecutive days, striatal PDE10A BPND

was 24 ± 12 % higher (BPND = 2.28 ± 0.76) compared to the baseline values (BPND = 1.84

± 0.60; baseline vs day 5: p = 0.03, Fig. 2). After a washout period of 10 days, average BPND

values were slightly higher (BPND = 2.25 ± 0.54) compared to baseline conditions, however

this difference was not significant (baseline vs day 15; p = 0.22).

On a subset of these animals (n = 3), D2 receptor availability was quantified using

[11C]raclopride. No significant difference in striatal D2 receptor binding could be found

between the baseline conditions (BPND = 2.08 ± 0.28) and day 5 (BPND = 1.93 ± 0.11) or

day 15 (BPND = 2.25 ± 0.45) of the experiment (Fig. 3) (baseline vs day 5, p = 0.25; base-

line vs day 15, p = 0.37).

Five day SCH23390 and D-amphetamine treatment (Experiment 6)

Treatment of rats with a combination of the D1 receptor antagonist SCH23390 and D-

amphetamine decreased PDE10A binding (Experiment 6, Fig. 4). Binding potentials were

20 ± 16 % lower after five consecutive days of treatment (BPND = 1.73 ± 0.18) compared to

baseline conditions (BPND = 2.23 ± 0.43) acquired in the same animals (baseline vs day 5;

p = 0.03). After an additional 10-days washout period, PDE10A binding potentials

augmented back to PDE10A binding at baseline conditions (BPND = 1.89 ± 0.25; baseline

vs day 15 p = 0.11).



Fig. 2 [18F]JNJ42259152 BPND values after a 5-days amphetamine treatment. Left: Transversal images of
PDE10A binding in brain. Images are overlaid on a VOI map and presented as averaged, parametric BPND
images (Logan Reference) at baseline conditions (a), at day 5 (b) and day 15 (c) of the experiment. Right:
Averaged (d) and individual (e) BPND values in striatum of amphetamine treated rats at baseline conditions,
after 5 days of amphetamine treatment (day 5) and after 10 days of washout (day 15). Each line represents
a repeated measurement in a single rat at different stages of treatment. Averaged data are presented as
mean ± SD. Wilcoxon matched pair test; *p < 0.05
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Five day SCH23390 treatment (Experiment 7)

In order to study the BPND changes due to SCH23390 treatment in the absence of D-

amphetamine, another group of rats (Experiment 7, Fig. 5) was treated for five con-

secutive days with the D1 receptor antagonist only. Also in this case treatment resulted in

a significant decrease of PDE10A binding (BPND = 2.20 ± 0.52) compared to baseline con-

ditions (BPND = 2.99 ± 0.59, p = 0.03). This decrease was however slightly higher compared

to the decrease observed after treatment with a combination of D-amphetamine and

SCH32290 (- 22 % after SCH23390 and D-amphetamine treatment versus – 27 ± 10 %

after SCH23390 treatment). After a washout period of 10 days, binding potentials

returned to the levels of the baseline scan (BPND = 2.82 ± 0.55, Fig. 5; baseline vs day

15: p = 0.22).
Quantitative analysis of striatal mRNA levels

Identification of the most stable household gene using GeNorm demonstrated that GUSB

and HMBS were the most stable. These two genes where therefore used for normalization

of D1 receptor, D2 receptor and PDE10A expression. Normalized CT values for D1, D2 and

PDE10A acquired in D-amphetamine and saline treated rats are displayed in Fig. 6. After

comparison of normalized D1, D2 and PDE10A mRNA levels in stratum of saline and D-

amphetamine treated animals, no significant alterations could be detected.



Fig. 3 [11C]Raclopride BPND values after a 5-days amphetamine treatment. Left: Transversal images of D2

receptor binding in the brain. Images are overlaid on a VOI map and presented as averaged, parametric
BPND images (SRTM) at baseline conditions (a), at day 5 (b) and day 15 (c) of the experiment. Right: Averaged
(d) and individual (e) BPND values in striatum of amphetamine treated rats at baseline conditions, after 5 days of
amphetamine treatment (day 5) and after 10 days of washout (day 15). Each line represents a repeated
measurement in a single rat at different stages of treatment. Averaged data are presented as mean ± SD.
No significant difference was observed
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Discussion
Alterations in DA neurotransmission are key pathological hallmarks in many neurological

and psychiatric disorders such as Huntington’s disease, Parkinson’s disease, addiction and

schizophrenia (Schmidt and Reith 2010). Furthermore, altering DA neurotransmission is

an important mechanism of several drugs commonly used in the treatment of these dis-

eases. Since PDE10A is dominantly expressed in the striatal MSNs, we hypothesized that

alterations in DA neurotransmission might also influence PDE10A binding through feed-

back on the cAMP/PKA pathway.

In the present study, we used [18F]JNJ42259152 small animal PET to quantify

PDE10A binding in vivo. The quantification of PDE10A using BPND values acquired by

Logan reference plot has been extensively evaluated by Celen et al. (Celen et al. 2013).

When comparing different BPND values at baseline conditions acquired over the differ-

ent experiments, a broad range of baseline BPND values in the different experiments

was observed. The reason of this variation was not clear. JNJ42259152 is a PDE10A in-

hibitor, so potentially a mass dose effect need to be taken into consideration. The spe-

cific activity range of [18F]JNJ42259152 at the time of injection showed a relatively

broad range (62–196 GBq/μmol, administered mass dose 0.14–0.45 μg) that originates

from the fact that multiple scan sessions were conducted with the same batch of

[18F]JNJ42259152. For each individual rat however, the specific activity at the start of

the scan did not differ much between the scans obtained at different time points. In



Fig. 4 [18F]JNJ42259152 BPND values after 5 days treatment with amphetamine and SCH23390. Left: Transversal
images of PDE10A binding in the brain. Images are overlaid on a VOI map and presented as averaged, parametric
BPND images (Logan Reference) at baseline conditions (a), at day 5 (b) and day 15 (c) of the experiment.
Right: Averaged (d) and individual (e) BPND values in striatum of SCH23390 + amphetamine treated rats at
baseline conditions, after 5 days of amphetamine treatment (day 5) and after 10 days of washout (day 15).
Each line represents a repeated measurement in a single rat at different stages of treatment. Averaged data are
presented as mean ± SD. Wilcoxon matched pair test; *p < 0.05
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addition, we did not observe any correlation between BPND values and specific activity

of the tracer (Additional file 1). Additionally, since anesthesia might have an influence

on the response to D-amphetamine (McCormick et al. 2011), the level of isoflurane

used to anesthetize the animals was kept constant throughout the whole experiment.

Therefore, we can assume that the large variation of baseline BPND values is probably

a result of inter-individual variation such as deviations in baseline PDE10A expression

levels or PDE10A activity. To investigate this hypothesis, we compared BPND values

acquired in rats from the different provides in this study (Harlan and Janvier). Our data

suggested that the baseline BPND values acquired in Janvier Wistar rats were signifi-

cantly higher compared to the BPND values acquired in Haran Wistar rats (p = 0.001;

Additional file 2). Therefore we can conclude that there could indeed be a large inter-

individual variation causing the broad range of baseline BPND values.

One of the main advantages of PET imaging however is that it allows to repeatedly

scan the same animal under different conditions, provided a suitable reference region

can be found. Due to the selective expression of PDE10A in striatum, cerebellum can

be used as a reference region for PDE10A quantification using [18F]JNJ42259152 (Celen

et al. 2013; Van Laere et al. 2013b). Hence, the baseline scan of an animal can be used

as an internal control for the PET scans obtained in several conditions in the same ani-

mal. This allows paired statistical analysis which looks at changes in BPND values dur-

ing the different treatment stages rather than comparing absolute group-averaged BPND



Fig. 5 [18F]JNJ42259152 BPND values after 5 days treatment with SCH23390. Left: Transversal images of
PDE10A binding in the brain. Images are overlaid on a VOI map and presented as averaged, parametric
BPND images (Logan Reference) at baseline conditions (a), at day 5 (b) and day 15 (c) of the experiment.
Right: Averaged (d) and individual (e) BPND values in striatum of SCH23390 treated rats at baseline conditions, after
5 days of amphetamine treatment (day 5) and after 10 days of washout (day 15). Each line represents a repeated
measurement in a single rat at different stages of treatment. Wilcoxon matched pair test; *p< 0.05, **p< 0.005
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values. Therefore, the bias caused by inter-individual variation on the results is ex-

pected to be minimal. Additionally, we determined the test-retest variability of the sa-

line treated animals. In the different experiments, the changes in PDE10A BPND values

are larger than the calculated test-retest variability. Therefore we can conclude that the

differences observed in our study are significantly larger than the statistical variation in

baseline PDE10A BPND levels.

The treatment protocols in this study were designed to evaluate the effects of alterations

in DA neurotransmission on striatal PDE10A binding. In order to stimulate DA release,

we treated animals with 5 mg/kg D-amphetamine (s.c.), a dose commonly used in litera-

ture for D-amphetamine treatment (Yin et al. 2006; Shi and McGinty 2011). Injection of

animals with D-amphetamine increases synaptic DA levels by blocking and reversing the

DA reuptake transporter (Robertson et al. 2009). Striatal DA release secondary to amphet-

amine was quantified by Kuczenski et al (Kuczenski 1986). Their research showed that at

a dose of 3 mg/kg amphetamine, a maximum DA release in striatum was achieved which

could not be increased by using higher dosages. Therefore, a maximum effect can be

expected after amphetamine dosage of 5 mg/kg. In striatum, the increased DA release can

potentially stimulate both the D1 as the D2 receptor pathway resulting in increased (D1)

or decreased (D2) cAMP levels in the postsynaptic neurons (Albin et al. 1989). Since the

expression of PDE10A is also most pronounced in these neurons (Lakics et al. 2010;

Seeger et al. 2003), it is likely that the alterations in cAMP might also induce changes in



Fig. 6 mRNA quantification in amphetamine and saline treated animals. Normalized quantities for D1, D2

and PDE10A acquired in amphetamine and saline treated. GUSB and HMBS were used for the normalization
of quantities values. Data are presented as mean ± SD. No significant difference in mRNA levels of amphetamine
and saline treated animals could be found
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PDE10A activity and/or expression as an effective compensating mechanism to normalize

cAMP levels.

Recent research showed that the effect of PDE10A inhibitors was dependent on the

activation state of both the direct as the indirect pathway of DA neurotransmission

(Megens et al. 2014). Further evidence on the differential effect of PDE10 inhibition

depending on the activation state of D1 and D2 pathways can be found in the behavioral

differences in different PDE10A KO mice. C57 KO mice with genetic background of

C57Bl6 (high dopaminergic tone) show increase in amphetamine-stimulated locomotor

activity (Siuciak et al. 2008), while PDE10 DBA KO mice have similar amphetamine-

stimulated locomotor activity as WT mice (Siuciak et al. 2006). These data indeed suggest

that there is an interaction between PDE10A and DA neurotransmission. Additionally

these data could indicate that both the D1 as the D2 pathway influence PDE10A in

different ways.

Since the stress of the treatment protocols can induce several physiological changes, the

treatment itself might also influence PDE10A microPET acquisition and/or PDE10A ex-

pression. In order to evaluate the influence of the treatment protocol, treatment with

saline was included as control (Experiments 3, 4 and 8). Both acute and chronic treatment

with saline did not result in a change of PDE10A BPND values, indicating that the

treatment protocol as such did not affect the results to a measurable extent.

In the first two experiments we tested the effect of acute D-amphetamine treatment

on PDE10A tracer binding. PDE10A binding after acute D-amphetamine treatment did

not change significantly compared to baseline conditions. As stated above, postsynaptic

neurons might adapt to changes in cAMP by modifying hydrolysis of cAMP. In
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literature, several lines of evidence imply increased cAMP levels in striatum secondary to

D-amphetamine treatment (Ren et al. 2009; Simpson et al. 1995). Ren et al. investigated

cAMP levels in different brain regions 10 min after an i.v. challenge of amphetamine

(doses: 0.25–3 mg/kg). They demonstrated 50 % higher cAMP levels after i.v. injection of

amphetamine (>1 mg/kg) compared to baseline. The lack of PDE10A binding change

observed in our initial data may be explained by the short time period between D-

amphetamine treatment and the PDE10A microPET determination. Jaber et al. reported

no change in D1 or D2 receptor transcription three hours after injection of 5 mg/kg D-

amphetamine (Jaber et al. 1995). This lack of alteration in the DA receptors could indicate

that the expression of a more downstream effector of the DA neurotransmitter such as

PDE10A might not be changed either.

Additionally, literature data has shown that the D1 and D2 receptors affect AC activ-

ity (and as a result also the cAMP levels) in opposing ways (Albin et al. 1989). Since

changes in cAMP would be the driving force for changes in PDE10A (Jäger et al. 2012),

both receptors would also induce opposite changes in PDE10A. To our knowledge,

there is no evidence of a differential selectivity of DA between the D1 receptor pathway

and the D2 receptor pathway when animals are treated with D-amphetamine at dosages

similar to the dose used in our experiment. This could mean that despite the potential

local change in cAMP levels after acute D-amphetamine injection, it is plausible that the

overall striatal cAMP concentrations remain unchanged. As a result, the average PDE10A

levels in all the neurons of striatum would also remain unchanged. Furthermore,

desensitization of the D1 receptor pathway (Roseboom and Gnegy 1989) and upregulation

of the presynaptic D2 receptor (Tomić et al. 1997) were observed secondary to acute D-

amphetamine treatment. This implies that although cAMP levels rapidly increase after

acute D-amphetamine treatment (Ren et al. 2009; Simpson et al. 1995), compensating

mechanisms, such as receptor internalization (Skinbjerg et al. 2010) or desensitization

(Roseboom and Gnegy 1989) can normalize cAMP levels and minimize the impact on

downstream effectors such as PDE10A.

In chronic D-amphetamine treatment on the other hand, it is generally accepted that

the D1 receptor plays a more dominant role in the development of sensitization (Shi

and McGinty 2011; Wright et al. 2013; Vanderschuren and Kalivas 2000). After 5 days

of D-amphetamine treatment, PDE10A binding was found to be significantly higher

compared to baseline conditions. The increase in PDE10A binding could conceivably

be an indirect and compensating mechanism secondary to altered cAMP levels which

would be caused by an increased D1 receptor stimulation dominating D2 receptor

stimulation. This theory is sustained by the work of Jäger et al. and Handa et al. who

showed that cAMP binds to the GAF-B domain of PDE10A and that this binding

activates PDE10A enzymatic activity (Jäger et al. 2012; Handa et al. 2008). Their data

are however still controversial since Matthiesen et al. and Russwurm et al. did not observe

any changes in PDE10A activity secondary to cAMP alterations (Matthiesen and Nielsen

2009; Russwurm et al. 2015). Further research will be necessary to investigate the exact

mechanism of increased PDE10A binding observed in our studies.

In order to clarify whether the D2 receptor plays a role in this the chronic response, a

subset of the 5-days D-amphetamine treated animals (n = 3) was additionally scanned

with 11C labeled raclopride. If the D2 receptor would be involved, changes in D2 recep-

tor imaging would have been expected. No significant changes could however be found
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after the treatment or washout period compared to baseline. These results were further

confirmed by D2 receptor mRNA quantification which detected no change in D2 recep-

tor mRNA levels. These data were also in line with data acquired by Richtand et al.,

who also observed no change in transcription of the DA receptors after a five-days D-

amphetamine treatment (Richtand et al. 1997).

The role of the D2 receptor in sensitization can be further questioned based on results

obtained by Dlaboga et al. (Dlaboga et al. 2008). In their research, they used quantitative

immunoblot analysis to quantify PDE10A expression after treatment with haloperidol, a

selective D2/3 receptor antagonist. After a 21-day treatment of rats with haloperidol, they

could detect a significant increase in PDE10A expression. When the D2 receptor on the

other hand would be activated by D-amphetamine treatment, a decreased PDE10A bind-

ing can be expected. We however discovered that repeated stimulation of the DA neuro-

transmission by D-amphetamine increases in vivo PDE10A binding. Overall, our results

and the above mentioned previous literature, gives us indications that the D2 receptor

does not play a dominant role in the chronic D-amphetamine response. These data

were however later contradicted by Natesan et al. who did not observe any change in

PDE10A expression and PET signal after chronic haloperidol treatment (28 days)

(Natesan et al. 2014).

In order to further confirm the hypothesis that activation of the D1 receptor pathway is

responsible for the observed increase in PDE10A binding, we chronically treated another

group of rats with a combination of D-amphetamine and SCH23390, a selective inhibitor

of the D1 receptor (Experiment 6) (Bourne 2001). The dose we used for SCH23390 treat-

ment (1 mg/kg every day) has previously been reported (Hess et al. 1986). Simultaneous

activation of the DA neurotransmission, combined with selective blocking of the D1 re-

ceptor pathway significantly decreased PDE10A availability (Fig. 4). This confirms that

after chronic stimulation of the dopaminergic system, D1 and not D2 receptor activation

is likely responsible for the observed increase in PDE10A binding. The importance of the

D1 receptor after chronic DA stimulation was also suggested by data of Selemon et al.

who noticed that D1 receptor antagonism can completely reverse the effects of D-

amphetamine sensitization (Selemon et al. 2010). Treatment of rats with only SCH23390

for 5 days decreased the PDE10A binding slightly more compared to the rats treated with

a combination of D-amphetamine and SCH23390. This difference can be expected since

D-amphetamine increases the synaptic DA levels which compete with SCH23390 for

D1 receptor binding. Considering the higher affinity of SCH23390 to the D1 receptor

than endogenous DA (Bourne 2001), the relative decrease in PDE10A binding in the

SCH23390 treated animals does not differ much from that in the SCH23390/D-am-

phetamine treated group.

Finally, we further investigated the alteration in [18F]JNJ42259152 BPND observed in

D-amphetamine treated animals. Since BPND equals in vivo ratio of Bmax over KD, the

observed increase in [18F]JNJ42259152 BPND could potentially be caused by a change

in PDE10A expression or/and a change in affinity of the tracer to PDE10A. In order to

differentiate between these two potential mechanisms, we investigated PDE10A mRNA

levels in striatum of 5-days D-amphetamine treated animals. PDE10A mRNA levels can

be an indication for PDE10A expression, however changes in translation, mobilization

of PDE10A and activation of PDE10A could not be excluded. Redistribution of PDE10A

secondary to changes in cAMP could also have contributed to the observed change.
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Several research groups have shown that PDE10A localization can be regulated in response

to changes in cAMP levels (Russwurm et al. 2015; Charych et al. 2010). Our data did not

show any significant difference in mRNA levels between D-amphetamine treated and saline

treated animals. This indicates that the observed changes in [18F]JNJ42259152 BPND might

be caused by a change in [18F]JNJ42259152 affinity for PDE10A rather than a change in

PDE10A expression. Although the differences are small, our data demonstrate changes in

PDE10A BPND independent from PDE10A expression. Since BPND values are often used in

quantification of PDE10A as a measure of expression, it is important to also take affinity

effects into account when quantifying PDE10A. Additionally, interactions between DA

neurotransmission clearly point out that PDE10A imaging might be biased in patients

treated with dopaminergic drugs.

The mechanism by which the affinity increased was not investigated in this study,

however this could be a response mechanism to the increased cAMP levels in D-

amphetamine treated animals. Although there still is some controversy on the matter,

Jäger et al. observed that binding of cAMP to the regulatory GAF domain of PDE10A

activates the enzyme (Jäger et al. 2012). A potential mechanism for PDE activation was

suggested by Pandit et al. who investigated allosteric regulation of PDE2. In native state,

catalytic sites of dimerized PDE2 are packed against each other. Binding of cGMP to

the GAF domain of PDE2 rotates the catalytic domain and facilitates the binding of

cAMP (Pandit et al. 2009). A similar mechanism for PDE10A can be conceivable since

PDE10A also has an allosteric binding site for cAMP. Since [18F]JNJ42259152 binds to

the same pocket in the catalytic domain as cAMP, activation of PDE10A would not

only facilitate cAMP but also [18F]JNJ42259152 binding to the catalytic domain.

Further investigation of the effect of cAMP on [18F]JNJ42259152 binding is currently

ongoing to fully understand the mechanism of the alterations observed here.

Conclusion
In conclusion, we showed that chronic activation of DA neurotransmission increases

striatal [18F]JNJ42259152 binding to PDE10A. Since many drugs used in neuropsychiatry

alter DA neurotransmission, PDE10A binding quantified by PET imaging in CNS

disorders may be biased by treatment with dopaminergic drugs Activation of the D1 over

the D2 receptor pathway is responsible for the effects of chronic D-amphetamine exposure.
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