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Background
Because of their abnormal proliferation, many malignant tumor cells exhibit higher 
amino acid and glucose uptake than normal cells. Consequently, several amino acids 
and glucose transporters are more highly expressed in cancer cells than in normal cells. 
Among these, L-type amino acid transporter 1 (LAT1), an isoform of the L-system, a 
 Na+-independent neutral amino acid transporter, is highly expressed in various types of 

Abstract 

Background: L-type amino acid transporter 1 (LAT1) is overexpressed in various 
cancers; therefore, radiohalogen-labeled amino acid derivatives targeting LAT1 have 
emerged as promising candidates for cancer radiotheranostics. However, 211At-labeled 
amino acid derivatives exhibit instability against deastatination in vivo, making it chal-
lenging to use 211At for radiotherapy. In this study, radiohalogen-labeled amino acid 
derivatives with high dehalogenation stability were developed.

Results: We designed and synthesized new radiohalogen-labeled amino acid deriva-
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human cancers and plays a vital role in cancer growth and survival(Hafliger and Charles 
2019; Kandasamy et  al. 2018). Consequently, radionuclide-labeled tracers targeting 
LAT1 may be helpful in imaging and radiotherapy of a wide range of cancers.

Many radiohalogen-containing amino acid derivatives have been developed for single-
photon emission computed tomography (SPECT) and positron emission tomography 
(PET) (Fig.  1) (Kratochwil et  al. 2014; Morita et  al. 2013; Hellwig et  al. 2008; Kerse-
mans et  al. 2006). In addition, radiotherapy using β−-emitting radionuclide 131I, para-
[131I]-iodo-L-phenylalanine  ([131I]-IPA) was also being investigated as a therapeutic 
agent and had shown efficacy in cancer treatment in clinical trials (Baum et al. 2011). 
Recent reports have often suggested that radiolabeled compounds containing α-ray 
emitting radionuclides showed better therapeutic effects than those using β−-emitting 
radionuclides (McDevitt et al. 2018; Morgenstern et al. 2020; Sgouros et al. 2020). There-
fore, amino acid derivatives containing astatine-211 (211At), a radionuclide that emits 
α-ray, have been studied (Watabe et al. 2020; Ohshima et al. 2020; Kaneda-Nakashima 
et  al. 2021). These 211At-labeled compounds have shown therapeutic effects in mouse 
models. However, 211At-labeled amino acid derivatives are unstable in vivo and undergo 
deastatination, reportedly owing to weak carbon-astatine bond strength. The release of 
211At from these compounds and its subsequent loss from tumor cells leads to decreased 
therapeutic efficacy. This phenomenon is unsuitable for radiotheranostics because the 
biodistribution of radioactivity after the injection of 211At-labeled amino acid deriva-
tives is different from that of diagnostic radiolabeled amino acid derivatives that are sta-
ble in vivo. In other words, 211At-labeled amino acid derivatives that are stable against 
deastatination in vivo would be useful radiopharmaceuticals for radiotherapy.

We recently reported that the neopentyl glycol (NpG) structure is an effective scaf-
fold for labeling radiohalogens, including 211At (Suzuki et al. 2021). Generally, alkyl hal-
ides (especially heavy halogens) are unstable against dehalogenation in  vivo; however, 

Fig. 1 Chemical structure of L-tyrosine and L-phenylalanine derivatives. a fluoroethyl-L-tyrosine (FET), b 
3-fluoro-α-methyl L-tyrosine or 3-iodo-α-methyl L-tyrosine (FMT or IMT), c 4-iodo-L-phenylalanine (IPA), d 
4-borono-L-phenylalaine (BPA), and e neopentyl glycol derivatives evaluated in this study (At-NpGT, I-NpGT, 
F-NpGT)
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radiohalogen-labeled compounds using the NpG structure show high stability against 
dehalogenation in vivo owing to high steric hindrance and resistance to P450 metabo-
lism. Therefore, we planned to synthesize radiohalogen-labeled amino acid derivatives 
using NpG as the radiohalogen-labeling moiety. According to the structures of radiola-
beled amino acid derivatives such as  [18F]-fluoroethyl-L-tyrosine  ([18F]-FET), modifi-
cation of the hydroxyl group of phenol in L-tyrosine is expected to be acceptable for 
substrate recognition by LAT1. Based on these considerations, we designed a radiohal-
ogen-labeled amino acid derivative by introducing an NpG structure into the hydroxyl 
group of the phenol in L-tyrosine. Because the NpG group is a valuable labeling moiety 
for all radiohalogen elements, radiohalogen-labeled amino acid derivatives  ([211At]At-
NpGT,  [125I]I-NpGT, and  [18F]F-NpGT; Fig. 1) were synthesized and characterized for 
their LAT1-specific cellular uptake and biodistribution in tumor-bearing mice. Further-
more, their usefulness as radiotheranostic pharmaceuticals was evaluated.

Methods
The preparation of  [211At]At-NpGT,  [125I]I-NpGT, and  [18F]F-NpGT and the analytical 
methods using RP-TLC and RP-HPLC are described in the Additional file 1.

Cellular uptake study

The rat glial cell line, C6 (RCB2854), was provided by the RIKEN BRC through the 
National Bio-Resource Project of the MEXT/AMED, Japan. The C6 glioma cells were 
trypsinized and suspended in 10% Fetal Bovine Serum (FBS) (Cosmo Bio Co., LTD., 
Tokyo, Japan) /RPMI1640 (Nacalai Tesque, Kyoto, Japan) medium at a density of 5 ×  105 
cells/tube. Each tube was centrifuged at 300 × g for 5  min. The supernatant was dis-
carded, and the cells were washed with 10  mM HEPES/Hanks’ balanced salt solution 
(HBSS) (Nacalai Tesque) (1  mL × 2). The cells were resuspended in 10  mM HEPES/
HBSS (500 µL). After preincubation at 37 ˚C for 5 min, 20 μL of 10 mM HEPES/HBSS 
containing either  [125I]I-NpGT (3.7 kBq),  [211At]At-NpGT (30 kBq), or  [18F]F-NpGT (40 
kBq) was added and incubated at 37 ˚C for 1, 10, and 30 min. The uptake of radiola-
beled amino acid derivatives was terminated by adding 1000 μL of ice-cold PBS (Nacalai 
Tesque), and the mixture was allowed to stand for 2 min under ice-cold conditions. After 
centrifugation at 300 × g for 5  min, the supernatant was removed, and the cells were 
washed twice with ice-cold PBS (1  mL × 2). The radioactivities of the precipitate and 
supernatant were measured using an auto-well gamma counter (Wizard 3, PerkinElmer 
Japan, Yokohama, Japan).

Extracellular release study

As described above, C6 glioma cells were incubated with  [211At]At-NpGT (30 kBq),  [125I]
I-NpGT (3.7 kBq), or  [18F]F-NpGT (67 kBq) for 10 min, then 1000 μL of ice-cold PBS 
was added subsequently. After centrifuging the mixture at 300 × g for 5 min, the super-
natant was discarded, and the cells were washed twice with 1000 μL of ice-cold PBS. 
Cells were resuspended in 10  mM HEPES/10% FBS/RPMI1640 medium (500 μL) and 
incubated at 37°C for 1, 10, or 30 min. The reaction was stopped by adding 1000 µL of 
ice-cold PBS, and the mixture was allowed to stand for 2 min under ice-cold conditions. 
After centrifugation at 300 × g for 5  min, the supernatant was removed, and the cells 
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were washed twice with ice-cold PBS (1 mL × 2). The radioactivities of the precipitate 
and supernatant were measured using an auto-well gamma counter. In the study of  [125I]
I-NpGT, the supernatant was analyzed by RP-HPLC (System A).

Inhibition assay

C6 glioma cells were suspended in 10 mM HEPES/HBSS (500 μL) containing 1 mM vari-
ous inhibitors (L-tyrosine (Tyr), 2-aminobicyclo[2.2.1]heptane-2-carboxylic acid (BCH) 
(Sigma-Aldrich Japan, Tokyo, Japan), α-(methylamino)isobutyric acid (MeAIB) (Tokyo 
Chemical Industry Co., Ltd, Tokyo, Japan), α-methyl-L-tyrosine (AMT)) (Sigma-Aldrich 
Japan), and preincubate at 37°C for 5 min. Subsequently,  [211At]At-NpGT (30 kBq),  [125I]
I-NpGT (3.7 kBq), or  [18F]F-NpGT (35 kBq) dissolved in 10 mM HEPES/HBSS (20 μL) 
was added to the mixture and incubated for 30 min. The reaction was stopped by adding 
1000 μL of ice-cold PBS. The reaction mixture was allowed to stand on ice for 2 min and 
centrifuged at 300 × g for 5 min. After centrifugation at 300 × g for 5 min, the superna-
tant was removed, and the cells were washed twice with ice-cold PBS (1 mL × 2). The 
radioactivities of the precipitate and supernatant were measured using an auto-well 
gamma counter.

Stability against dehalogenation in PBS or FBS

[211At]At-NpGT (44.4 kBq),  [125I]I-NpGT (11.1 kBq), or  [18F]F-NpGT (1.0 MBq) dis-
solved in aqueous solution (5 μL) were added to either PBS (50 μL) or FBS, 50 μL). In 
the PBS stability studies, RP-TLC was performed at 1, 3, and 6 h for  [125I]I-NpGT, and 
at 1 and 3 h for  [211At]At-NpGT and  [18F]F-NpGT to evaluate the percentage of the free 
halogen fraction. For stability studies in FBS with  [125I]I-NpGT, after incubation for 24 
h, acetonitrile (100  µL) was added to the reaction, and the contents were centrifuged 
at 13,000  rpm for 10 min. The supernatant was analyzed by RP-HPLC (System A) to 
determine the percentage of radioactivity corresponding to the free halogen fraction. In 
the other studies performed  [211At]At-NpGT or  [18F]F-NpGT, after incubation for 3 h, 
acetonitrile (100  µL) was added to the reaction mixture, and the procedure above for 
sample analysis was repeated to determine the percentage of radioactivity correspond-
ing to the free halogen fraction.

Preparation of animals

Animal studies were conducted in accordance with the institutional guidelines approved 
by the Chiba University Animal Care Committee or Osaka University Animal Care 
Committee. Six-week-old male ICR normal mice and five-week-old male BALB/c 
nude mice were purchased from Japan SLC, Inc. (Hamamatsu, Japan). C6 glioma cells 
(5.0 ×  106 cells) were suspended in 100 μL of culture medium and Matrigel (1:1 ratio; BD 
Biosciences, Franklin Lakes, NJ, USA). Tumor xenograft models were prepared by sub-
cutaneously injecting a suspension of C6 glioma cells into immunodeficient nude mice.

Biodistribution of tumor‑bearing mice

The animal study was conducted according to the protocol reviewed and approved 
by Chiba University Animal Care Committee (Permit No. 4–183) or Osaka Univer-
sity Animal Care Committee (Permit No. 30–103-008). One week after C6 glioma cell 
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transplantation, nude mice were injected intravenously with  [211At]At-NpGT (30 kBq/
mouse),  [125I]I-NpGT (7.4 kBq/mouse),  [18F]F-NpGT(400 kBq/mouse) or  [125I]IMT (7.4 
kBq/mouse) in PBS (100 μL). At 1 and 3 h post-injection., the mice (n = 4–5) were euth-
anized by cervical dislocation after isoflurane (Viatris Inc., New York) inhalation, and 
the organs were dissected. The organs of interest were weighed, and radioactivity counts 
were measured using an auto-well gamma counter.

Urine analysis

Male ICR mouse was injected intravenously with  [125I]I-NpGT (185 kBq/mouse) in PBS 
(100 μL). At 6 h post-injection, a urine sample was collected. The urine sample (100 μL) 
was filtered through a 10  kDa cutoff ultrafiltration membrane (Sartorius, Germany) 
before being analyzed by RP-HPLC (system D).

Therapeutic study

The animal study was conducted according to the protocol reviewed and approved by 
Chiba University Animal Care Committee (Permit No. 5–225). Tumor-bearing mice 
were prepared in the same manner as described in the biodistribution study. After 
tumor volumes had reached approximately 150–200   mm3,  [211At]At-NpGT (0.1 MBq/
mouse (n = 5), 0.3 MBq/mouse (n = 5)) or D-PBS(-) (control (n = 5)) was administered 
intravenously. Tumor size  (mm3) was measured using calipers and calculated using the 
following elliptical sphere model equation:

where V is the volume of the tumor  (mm3), a is the shorter radius (mm), and b is the 
longer radius (mm)).

In case of weight loss of more than 20%, the appearance of moribund state signs, or 
tumor size greater than 800   mm3, the mice were euthanized humanely by isoflurane 
inhalation.

Statical analysis

All data are presented as the mean ± standard deviation (SD) of at least three independ-
ent measurements. Biodistribution studies were analyzed using one-way analysis of 
variance (ANOVA) followed by Tukey’s test for multiple comparisons (GraphPad Prism; 
GraphPad Software, San Diego, CA, USA). Statistical significance was set at P < 0.05.

Results
Synthesis and radiolabeling

The synthesis procedures for  [211At]At-NpGT,  [125I]I-NpGT, and  [18F]F-NpGT are 
depicted in  Additional file  1: Scheme S1.  [211At]At-NpGT and  [125I]I-NpGT were 
obtained with radiochemical yields of 44.3% (in 2 steps) and 40.9% (in 2 steps), respec-
tively, by reaction with precursor 4 at 37 ˚C. In contrast,  [18F]F-NpGT was obtained with 
a radiochemical yield of 35.4% (in 2 steps) by reaction with precursor 4 at 100 ˚C. Both 
 [125I]-NpGT and  [18F]-F-NpGT showed single peaks at retention times identical to those 
of non-radioactive compounds on RP-HPLC (Additional file 1: Fig. S1). For 211At, a non-
radioactive iodine-labeled amino acid derivative (I-NpGT) was used as an authentic 

V = 4/3× π × a
2
× b
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sample because there were no non-radioactive astatine isotopes.  [211At]At-NpGT 
exhibited a single peak with a retention time similar to that of I-NpGT (Additional 
file  1:  Fig.  S1). The radiochemical purities of all compounds determined by RP-HPLC 
were greater than 99%, and subsequent experiments were performed using these radi-
olabeled compounds.

Stability study

All radiolabeled compounds showed high stability in PBS and FBS, and no halogen des-
orption was observed (< 1%) (Table 1).

In vitro experiments

Cellular uptake of  [211At]At-NpGT,  [125I]I-NpGT, and  [18F]F-NpGT by C6 glioma cells 
increased over time (Fig. 2a). Furthermore, these radiolabeled compounds were gradu-
ally excreted from the cells (Fig.  2b). RP-HPLC analysis revealed that the intact  [125I]
I-NpGT was excreted from the cells (Additional file  1: Fig. S2). The uptake of these 
radiolabeled compounds was significantly inhibited in the presence of BCH, an inhibi-
tor of the L-type amino acid transporter, AMT, a LAT1-recognizing amino acid, and 

Table 1 Stability of  [211At]At-NpGT,  [125I]I-NpGT, and  [18F]F-NpGT in PBS and FBS

* The data was performed by TLC
** The data was performed by RP‑HPLC

% of free halogen

In PBS* 1 h 3 h 6 h

[211At]At-NpGT  < 1%  < 1% N/A

[125I]I-NpGT  < 1%  < 1%  < 1%

[18F]F-NpGT  < 1%  < 1% N/A

In FBS** 1 h 3 h 6 h

[211At]At-NpGT  < 1%  < 1% N/A

[125I]I-NpGT  < 1%  < 1%  < 1%

[18F]F-NpGT  < 1%  < 1% N/A

Fig. 2 Cellular uptake and release of  [211At]At-NpGT,  [125I]I-NpGT and  [18F]F-NpGT from C6 cells. a 
Time-course study of uptake. b Time-course study of extracellular release. The Y-axis shows the percentage 
release of each agent. c Inhibition of each agent’s uptake with amino acids and a LAT1-selective inhibitor 
(1 mM). The Y-axis shows the percentage of the control. The inhibitors were as follows Tyr = L-tyrosine; 
BCH = 2-aminobicyclo-(2,2,1)-heptane-2-carboxylic acid; MeAIB = α-methyl-aminoisobutyric acid; 
AMT = α-methyl-L-tyrosine
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L-tyrosine (Fig. 2c). In contrast, MeAIB, an A-type amino acid transporter inhibitor, did 
not inhibit the cellular uptake.

Biodistribution study

[211At]At-NpGT,  [125I]I-NpGT, and  [18F]F-NpGT were administered to tumor-bearing 
mice, and their pharmacokinetics were evaluated (Fig. 3, Table 2). We used  [125I]-IMT 
as a reference radiolabeled amino acid tracer, the 123I-labeled form of which has been 
reported to be a cancer-diagnostic agent.  [211At]At-NpGT,  [125I]I-NpGT, and  [18F]
F-NpGT showed rapid blood clearance. Both  [211At]At-NpGT and  [125I]I-NpGT showed 
low accumulation in the stomach and thyroid glands. The accumulation of  [18F]F-NpGT 
in the bone was low.  [211At]At-NpGT,  [125I]I-NpGT, and  [18F]F-NpGT showed simi-
lar biodistribution in all tissues at both 1 and 3 h post-injection. In contrast,  [211At]
At-NpGT,  [125I]I-NpGT, and  [18F]F-NpGT showed higher tumor accumulation than 
 [125I]-IMT and significantly higher tumor retention, even 3 h post-injection. The tumor-
to-blood ratios of these radiolabeled compounds were higher than those of  [125I]-IMT at 
3 h post-injection.

Urine analysis

The urine sample (100 μL) was filtered through a 10 kDa cutoff ultrafiltration membrane 
with a 73% recovery rate. RP-HPLC analysis revealed the presence of intact  [125I]I-NpGT 
and unidentified metabolites in the urine (Additional file 1: Fig. S3). Very little radioac-
tivity was observed in the void volume fraction where free iodine elutes.

Therapeutic study

Treatments were performed by administering  [211At]At-NpGT (0.1 MBq/mouse or 0.3 
MBq/mouse) or PBS (control) to C6 glioma-bearing mice.  [211At]At-NpGT significantly 

Fig. 3 Biodistribution of  [211At]At-NpGT,  [125I]I-NpGT,  [18F]F-NpGT and  [125I]-IMT at 1 h and 3 h Post-injection 
in C6 bearing mice. Activity uptake in distinct organs is expressed as percentage of injected dose per organ 
mass (%ID/g) or as percentage of injected dose (%ID)
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inhibited the growth of C6 glioma tumors in a dose-dependent manner compared to 
control mice. (Fig. 4a). Even in the group that received 0.3 MBq/mouse  [211At]At-NpGT, 
changes in body weight were not significantly different from those in control mice 
(Fig. 4b).

Discussion
Radiohalogen encompass various isotopes, including 18F employed in PET diagnosis, 
123I and 131I used in SPECT diagnosis, 131I used for β−-ray therapy, and 211At expected 
for α-ray therapy. The combination of these radionuclides holds promising poten-
tial for applications in radiotheranostics. Ensuring similarity in the pharmacokinet-
ics of diagnostic and therapeutic agents in the body is essential for their application in 

Table 2 Biodistribution at 1 h and 3 h Post-injection in Tumor-Bearing  Micea

a Tissue radioactivity was expressed as %ID/g ± SD for each group (n = 5)
* Tissue radioactivity was expressed as %ID. Statistical analysis was performed using on‑way ANOVA followed by Tukey’s 
test between  [211At]At‑NpGT and  [125I]I‑NpGT (b),  [211At]At‑NpGT and  [18F]F‑NpGT (c),  [125I]I‑NpGT and  [18F]F‑NpGT (d),  [211At]
At‑NpGT and  [125I]I‑IMT (e),  [125I]I‑NpGT and  [125I]‑IMT (f), and  [18F]F‑NpGT and  [125I]I‑IMT (g)

[211At]At‑NpGT [125I]I‑NpGT [18F]F‑NpGT [125I]I‑IMT

Time 
after 
Injection

1 h 3 h 1 h 3 h 1 h 3 h 1 h 3 h

Blood 1.39 ± 0.33 c 0.49 ± 0.09 1.86 ± 0.09 0.54 ± 0.27 1.91 ± 0.35 0.37 ± 0.10 1.22 ± 0.24f,g 0.22 ±  004e,f

Liver 8.09 ± 1.34 2.25 ± 0.55 8.09 ± 1.22 2.94 ± 1.63 7.28 ± 1.30 1.40 ± 0.53 0.80 ± 0.20f,g 0.14 ± 0.04e,f

Spleen 2.22 ± 0.58 0.94 ± 0.17b 2.30 ± 0.58 0.56 ± 0.24 2.36 ± 0.68 0.63 ± 0.20 1.01 ± 0.22f,e,g 0.16 ± 0.05e,f,g

Kidney 32.8 ± 5.23c 14.8 ± 3.41c 25.0 ± 4.25d 10.4 ± 4.42d 13.5 ± 3.58 4.06 ± 1.53 19.6 ± 3.37 2.34 ± 0.31e,f

Pancreas 16.6 ± 1.03b 3.33 ± 1.17 30.1 ± 3.05 7.36 ± 4.07 20.3 ± 4.20 8.54 ± 2.55 11.9 ± 4.48 f 0.56 ± 0.21f,g

Heart 1.09 ± 0.20 0.74 ± 0.73 1.36 ± 0.20 0.43 ± 0.18 1.16 ± 0.30 0.56 ± 0.11 1.12 ± 0.29 0.11 ± 0.03

Lung 2.46 ± 0.41c 1.59 ± 1.10 2.14 ± 0.37d 0.58 ± 0.22 1.89 ± 0.35 0.65 ± 0.17 1.00 ± 0.39 e, f 0.17 ± 0.03e

Muscle 0.95 ± 0.53 0.42 ± 0.07 0.96 ± 0.14 0.59 ± 0.27 0.48 ± 0.08 0.62 ± 0.48 1.10 ± 0.28 0.27 ± 0.09

Bone 0.81 ± 0.23 0.44 ± 0.12 1.14 ± 0.01 0.42 ± 0.16 0.83 ± 0.22 0.58 ± 0.42 0.87 ± 0.06 0.14 ± 0.02

Tumor 2.72 ± 0.63 0.86 ± 0.23c 2.97 ± 0.58 0.99 ± 0.37 2.95 ± 0.40 1.46 ± 0.33 2.07 ± 0.23 g 0.25 ± 0.03e,f,g

Tumor/
Blood

2.02 ± 0.51 1.73 ± 0.26c 1.59 ± 0.28 1.98 ± 0.39d 1.56 ± 0.15 3.96 ± 0.26 1.74 ± 0.35 1.17 ± 0.31e,f,g

Intestine* 5.56 ± 0.77c 5.88 ± 0.98c 5.12 ± 1.23 7.89 ± 3.22d 4.07 ± 0.25 2.60 ± 0.21 1.67 ± 0.49e,f,g 0.85 ± 0.21f

Stomach* 1.03 ± 0.20 0.88 ± 0.28c 1.22 ± 0.62 0.65 ± 0.43 1.03 ± 0.52 0.19 ± 0.07 0.94 ± 0.36 0.61 ± 0.38

Neck* 0.09 ± 0.02 0.11 ± 0.03 0.03 ± 0.01 0.09 ± 0.03 0.02 ± 0.01 0.01 ± 0.00 0.35 ± 0.06e,f,g 0.54 ± 0.11e,f,g

Fig. 4 Tumor growth inhibition (a) and body weight change (b) by  [211At]At-NpGT. Statistical significances 
were determined by Tukey’s test; p < 0.05 compared with 0.1 MBq (‡), 0.3 MBq(§)
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radiotheranostics. While the stability of radioiodine- or 18F-labeled compounds contain-
ing benzene ring as a radiolabeling moiety is high, 211At-labeled compounds, especially 
211At-labeled low-molecular-weight compounds, show low stability against deastati-
nation in vivo, making the radiotheranostics use difficult (Watabe et al. 2020; Kaneda-
Nakashima et al. 2021; Garg et al. 1990; Guerard et al. 2013). Although radiohalogens 
contain many useful radionuclides, it is challenging to employ them in radiotheranostics, 
especially when combining 18F and 211At. To address this issue, we previously showed 
that a neopentyl structure with two hydroxyl groups (NpG) can hold 211At and radioi-
odine stably in vivo (Suzuki et al. 2021). Additionally, 18F-labeled compounds contain-
ing NpG are stable in vivo (Shimizu et al. 2019). Based on these findings, we designed 
an NpG-conjugated L-tyrosine by introducing the NpG structure into the phenolic 
hydroxyl group of L-tyrosine. As shown in Table  2, accumulation of  [211At]At-NpGT 
in the spleen, lungs, stomach, and thyroid was low.  [125I]I-NpGT accumulation in the 
stomach and thyroid was low. The accumulation of  [18F]F-NpGT in the bone was also 
low. These results indicate that NpG can effectively retain radiohalogens such as 211At, 
even when labeling low-molecular-weight compounds such as L-tyrosine. In addition, 
RP-HPLC analysis of urine sample showed that free iodine fractions (the void volume) 
had little radioactivity (Additional file 1: Fig. S3), also supporting high stability against 
dehalogenation in vivo.

In the present in  vitro cell-based study (Fig.  2),  [211At]At-NpGT,  [125I]I-NpGT, and 
 [18F]F-NpGT were taken up and released from the tumor cells, indicating that these 
radiolabeled compounds were co-transported. These characteristics are consistent with 
those of LAT1(Hafliger and Charles 2019). The cellular uptakes of  [211At]At-NpGT,  [125I]
I-NpGT, and  [18F]F-NpGT were similarly inhibited to the same extent by BCH, AMT, 
and L-Tyr, respectively (Fig.  2c). These results suggest that, although the calculated 
molecular weights of these compounds were significantly different  ([211At]At-NpGT:493, 
 [125I]I-NpGT:407, and  [18F]F-NpGT:300), these radiolabeled compounds were simi-
larly recognized by LAT1. LAT1-targeting radiolabeled amino acid derivatives such as 
 [18F]-FET and para-borono-L-phenylalanine (BPA) have introduced substitutions at the 
phenolic hydroxyl group or para-position of the benzene ring (Fig.  1). Consequently, 
the modification of the phenolic hydroxyl group is expected to have minimal impact on 
LAT1 recognition. The present NpG-radiolabeled compounds were also modified on the 
hydroxyl group of the phenol of L-tyrosine (para-position of the benzene ring). Similar 
recognition of LAT1 for these radiolabeled compounds may indicate that, despite sig-
nificant variations in their molecular weights, the molecular sizes of these compounds 
are not substantially different.

In biodistribution studies,  [211At]At-NpGT,  [125I]I-NpGT, and  [18F]F-NpGT were 
highly accumulated in the tumor and were only moderately retained (Table  2). As 
LAT1 is an amino acid exchanger, the accumulation of these radiolabeled compounds 
in tumors gradually decreases with blood clearance. Nonetheless, the rapid clearance 
of these radiolabeled compounds from the bloodstream has enabled the attainment 
of high tumor-to-blood ratios, thereby offering valuable properties for the develop-
ment of radiopharmaceuticals.  [211At]At-NpGT,  [125I]I-NpGT, and  [18F]F-NpGT were 
highly distributed in the kidney and pancreas immediately after injection and were rap-
idly excreted from these organs. These biodistribution patterns are similar to those of 
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other radiolabeled amino acid derivatives (Heiss et al. 1999; Shikano et al. 2004). How-
ever, it should be noted that radiolabeled amino acid derivatives such as  [18F]-FET and 
 [123I]-IMT have been shown to accumulate in the pancreas in mouse studies but not in 
humans (Jager et  al. 1998; Pauleit et  al. 2003). While the reason underlying these dif-
ferences remains unknown, some studies have suggested differences in the expression 
patterns of LAT1 in the pancreas of mice and humans as a possible cause (Rooman et al. 
2013; Nakada et al. 2014).

[211At]At-NpGT,  [125I]I-NpGT, and  [18F]F-NpGT showed higher accumulation in the 
liver and intestines than  [125I]-IMT. This accumulation could be due to the increased 
lipophilicity of the radiolabeled compounds. Since accumulation in the liver has also 
been observed for  [18F]-FMT, this observation in our compounds was thought to be 
due to the introduction of substituents to the hydroxyl group of phenol in L-tyrosine 
(Kaira et al. 2007). As no nonspecific accumulation in the abdomen has been observed 
for  [18F]-FMT in clinical studies, we believe that the amount of radiolabeled NpG-conju-
gated tyrosine derivatives that accumulated in the liver and intestine in this study would 
not be a significant concern when used in clinical practice. In the mouse model used to 
evaluate the therapeutic effect, tumor cells proliferated rapidly, exceeding 800   mm3 by 
day 8 of the experiment. Despite this rapid tumor growth, the 0.1 MBq/mouse dose of 
 [211At]At-NpGT significantly inhibited tumor growth. Furthermore, the 0.3 MBq/mouse 
dose group showed high tumor growth inhibition and no weight loss. These results indi-
cated that  [211At]At-NpGT was highly effective as an α-ray therapeutic agent for cancer.

Radionuclide-labeled amino acid derivatives targeting LAT1 initially accumulated 
in tumor cells but were gradually excreted. This is because LAT1 is a co-transported 
amino acid transporter, and radiolabeled amino acid derivatives, such as  [18F]-FET and 
 [123I]-IMT, are not used for protein synthesis (Wester et al. 1999; Lahoutte et al. 2001). 
Although radiometabolites in tumor cells were not evaluated in this study, consider-
ing previous reports on amino acid derivatives, it is likely that  [211At]At-NpGT,  [125I]
I-NpGT, and  [18F]F-NpGT were not used for protein synthesis and, as a result, their 
gradual excretion from the tumor may have been observed. When the radioactivity 
excreted from tumor cells incorporating  [125I]I-NpGT was analyzed by RP-HPLC, the 
main radioactivity was derived from intact  [125I]I-NpGT (Additional file  1: Fig. S2). 
These results suggested that  [125I]I-NpGT was co-transported into and out of tumor 
cells. The excretion of radioactivity in tumors is unsuitable for radiotherapy. However, 
due to the short half-life of 211At (7.2 h), it is possible that 211At can efficiently irradiate 
tumor cells even during its short residence time. Based on these considerations, 211At-
labeled amino acid derivatives, including  [211At]At-NpGT, are considered to have high 
therapeutic efficacy. Furthermore, since the  [211At]At-NpGT produced in this study did 
not show dehalogenation in  vivo,  [211At]At-NpGT is expected to have a higher thera-
peutic effect than the other 211At-labeled amino acid derivatives, notwithstanding the 
absence of comparative data.

In this study,  [211At]At-NpGT,  [125I]I-NpGT, and  [18F]F-NpGT were prepared using 
triflate precursor compound 4. These radiolabeled compounds were obtained from 
compound 4 in a 2-step reaction with 30–40% radiochemical yield. The radiochemical 
conversion rates in each reaction were over 80%; however, the radioactivity decreased 
because of Sep-Pak and HPLC purification, resulting in low radiochemical yields. While 
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the present study focused on the biodistribution of radiolabeled compounds and the 
therapeutic effect of  [211At]At-NpGT, we did not optimize the radiolabeling procedures. 
Therefore, further studies on optimization of radiolabeling procedures are required to 
obtain high radiochemical yields.

Conclusion
[211At]At-NpGT,  [125I]I-NpGT, and  [18F]F-NpGT were synthesized by incorporating 
an NpG structure into the phenolic hydroxyl group of L-tyrosine. These radiolabeled 
compounds were recognized as substrates of LAT1 and showed similar biodistribu-
tion in tumor-bearing mice. In particular, the similarity in the biodistribution of  [211At]
At-NpGT and  [18F]F-NpGT indicates that this pair of radiolabeled compounds would 
be useful for radiotheranostics. To the best of our knowledge, this is the first report on 
the similarity in the biodistribution of 18F-labeled and 211At-labeled compounds based 
on low-molecular-weight compounds. In this study,  [211At]At-NpGT exhibited a dose-
dependent inhibitory effect on the growth of glioma-bearing mice. These findings sug-
gest that radiotheranostics holds promise with the use of  [18F]F-NpGT and  [123/131I]
I-NpGT for diagnostic applications and  [211At]At-NpGT and  [131I]I-NpGT for therapeu-
tic applications.
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LAT1  L-Type amino acid transporter 1
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P450  Cytochrome P450
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