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Abstract 

Background:  Reduced expression or impaired signalling of tropomyosin recep‑
tor kinases (Trk receptors) are found in a vast spectrum of CNS disorders. [18F]TRACK 
is the first PET radioligand for TrkB/C with proven in vivo brain penetration and on-
target specific signal. Here we report dosimetry data for [18F]TRACK in healthy humans. 
6 healthy participants (age 22–61 y, 3 female) were scanned on a General Electric 
Discovery PET/CT 690 scanner. [18F]TRACK was synthesized with high molar activi‑
ties (Am = 250 ± 75 GBq/µmol), and a dynamic series of 12 whole-body scans were 
acquired after injection of 129 to 147 MBq of the tracer. Images were reconstructed 
with standard corrections using the manufacturer’s OSEM algorithm. Tracer concentra‑
tion time-activity curves (TACs) were obtained using CT-derived volumes-of-interest. 
Organ-specific doses and the total effective dose were estimated using the Committee 
on Medical Internal Radiation Dose equation for adults and tabulated Source tissue 
values (S values).

Results:  Average organ absorbed dose was highest for liver and gall bladder 
with 6.1E−2 (± 1.06E−2) mGy/MBq and 4.6 (± 1.18E−2) mGy/MBq, respectively. Total 
detriment weighted effective dose EDW was 1.63E−2 ± 1.68E−3 mSv/MBq. Organ-spe‑
cific TACs indicated predominantly hepatic tracer elimination.

Conclusion:  Total and organ-specific effective doses for [18F]TRACK are low 
and the dosimetry profile is similar to other 18F-labelled radio tracers currently used 
in clinical settings.

Keywords:  Tropomyosin receptor kinases, Positron emission tomography, [18F]TRACK, 
Dosimetry

Introduction
Trk receptors in the central nervous system (CNS) regulate many aspects of neuronal 
development and function, such as cell differentiation, dendritic outgrowth, and syn-
aptic plasticity. They are classified according to the neurotrophins they interact with 
(Reichardt 2006): TrkA is activated through nerve growth factor (NGF), TrkB interacts 
with brain-derived neurotrophic factor (BDNF) and neurotrophin-4 (NT4) while neuro-
trophin 3 (NT-3) binds to TrkC.
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Within the CNS, reduced expression or abnormal and impaired signalling of Trk 
receptors are found in a vast spectrum of disorders and pathologies, such as ischemic 
stroke, Alzheimer’s disease (AD) and others (Tejeda and Díaz-Guerra 2017).

We developed [18F]TRACK, an 18F-derivative of [11C]-(R)-IPMICF16 (Bernard-
Gauthier et  al. 2017), displaying significantly reduced P-gp-liability, brain off-
target selectivity, and favorably adjusted binding affinity in TrkB/C rich regions 
(Bernard-Gauthier et  al. 2018). [18F]TRACK showed excellent in  vivo pharmacoki-
netic properties in all species including humans (Bailey et  al. 2019), permeates the 
blood–brain-barrier rapidly with fast reversible binding kinetics and a high specific 
signal as demonstrated by competition studies (Bernard-Gauthier et al. 2017). Finally, 
in line with previous immunohistochemical detection and in situ hybridization stud-
ies of post-mortem tissue, this tracer adequately quantified the TrkB/C density reduc-
tion in the hippocampus of AD patients as compared to healthy brains in initial 
in vitro studies (Bernard-Gauthier et al. 2017, 2018). The objective of this study was 
to provide dosimetry data for [18F]TRACK in humans.

Methods
We studied 6 healthy participants (3 male, 3 female) between 22 and 61 years of age 
with no history of metabolic, gastrointestinal, cardiovascular or psychiatric disor-
ders. Subjects were recruited through advertisements following ethics board approval 
(CCER20-21–03). Demographic data, injected doses and injected masses are summa-
rized in Table 1.

[18F]TRACK was synthesized as previously described (Mossine et  al. 2017). Radi-
ochemical yield was 4.4 ± 0.8% not corrected for decay (activity range 3.5–5.7 GBq) 
with > 99% radiochemical purity and molar activities of 250 ± 82 GBq/µmol at the end 
of synthesis. No effect of radiotracer on vital signs was recorded during the scan.

PET scans were performed on a General Electric Discovery PET-CT 690 scan-
ner (GE Healthcare, Milwaukee, WI) at the PERFORM Centre, Concordia Univer-
sity, Montréal. First, whole body CT scans were obtained for attenuation correction 
and anatomical localization. Subsequently, an intravenous bolus of [18F]TRACK was 
injected over 1 min (dose range: 129 to 147 MBq) followed by 12 whole body emission 
scans of 8 bed positions each.

Table 1  Participant demographics, molar [18F]TRACK activity (Am) and injected activity and mass

Subject Sex Age Body 
weight 
[kg]

Am [GBq/µmol] Injected activity [MBq] Injected mass [µg]

S1 Male 26 85 389 133.3 0.323

S2 Female 59 49 236 129.3 0.376

S3 Female 24 60 250 156.4 0.367

S4 Female 54 65 144 129.0 0.663

S5 Male 42 69 277 138.4 0.328

S6 Male 18 74 203 147.0 0.411

Mean ± SD 250 ± 82 138.9 ± 10.90 0.41 ± 0.13
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PET images were reconstructed with all standard corrections using the propri-
etary Ordered Subset Expectation Maximization (OSEM) algorithm provided by the 
camera’s manufacturer, resulting in a dynamic series of 12-time frames sampled on a 
256 × 256 × 299 matrix with a reconstructed voxel size of 2.73 × 2.73 × 3.27 mm3.

A set of 13 source organs and one region representing the rest of the body (Table 2) 
were segmented on each participant’s CT scan using the Velocity Software (https://​
www.​varian.​com/​produ​cts/​inter​venti​onal-​solut​ions/​veloc​ity) from which binary 3D 
masks for each organ were created. The activity in Bq/mL from each voxel of each frame 
was obtained, activity values were multiplied by voxel volume to obtain total activity in 
MBq per organ and time integrated activity (TIA) was calculated for each voxel. For each 
organ, the TIA 3D matrix was convoluted to the corresponding mask to only extract the 
cumulated activity for the respective organ, from which the average cumulated activ-
ity was computed and normalized to injected activity to obtain time integrated activity 
coefficients (TIAC).

The radiation doses absorbed by the target organs from surrounding source organs 
were calculated using the MIRD method (Cherry et al. 2012). The absorbed target organ 
dose per unit activity is the sum of the cumulated activity in each of the source organs 
multiplied by a dose factor (S-value) in units of Gy/Bq*s (MIRD-Calc software V1.1-
Genesis (Carter et al. 2021; Kesner et al. 2018)). The effective (E) and detriment weighted 
dose (EDW) for each subject were obtained by summation of the equivalent dose multi-
plied by the organ specific weighting factors.

Results
The distribution of radioactivity over time is illustrated for one subject (Fig.  1); peak 
activities for all source organs are listed in Table 2. Average time activity curves for all 
source organs are shown in the Fig. 2. All source organs show a first activity peak within 
minutes after tracer injection related to perfusion and rapid organ uptake (e.g., liver). 

Table 2  Source organs, peak activity and peak time

Source organ First peak activity 
[MBq]

First peak time 
[min]

Second peak activity 
[MBq]

Second 
peak time 
[min]

Urinary bladder 0.07 2 0.138 95

Bone/ bone marrow 13.0 4.5 – –

Brain 2.4 4.5 – –

Gall bladder 0.55 4.5 0.94 85

Heart 8.84 2 – –

Kidney 5.67 2 – –

Colon content 0.55 2 0.60 397

Liver 37.00 9 – –

Lungs 27.3 2 – –

Ovaries 0.02 2 – –

Small bowel 1.28 2 2.48 397

Testes 0.07 2 – –

Thyroid 0.14 2 – –

Rest of body 70 2 – –

https://www.varian.com/products/interventional-solutions/velocity
https://www.varian.com/products/interventional-solutions/velocity
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Fig. 1  Example of radiotracer distribution in the body over time (maximum intensity projection for each time 
frame, T Frame start time in minutes, dt Frame duration in minutes)

Fig. 2  Organ specific mean absorbed doses and standard deviation (N = 3 for reproductive organs, N = 6 all 
other organs and tissues)
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Highest activities were found in liver, lungs, bone, kidneys and brain. Organs of the 
digestive tract (gall bladder, small bowel, and colon) also showed a delayed second activ-
ity peak and larger inter-individual variability consistent with hepato-biliary elimination 
and variations in intestinal motility (Fig. 2).

The model explained on average 89.7 (± 3.27) % of the total injected activity (Table 3). 
Consistent with hepato-biliary elimination, the absorbed dose coefficients were high-
est for liver and gall bladder with 6.1E−2 (± 1.06E−2) mGy/MBq and 4.6 (± 1.18E−2) 
mGy/MBq respectively. Absorbed dose coefficients for reproductive organs were low 
with 1.12E−2 (± 0.16E−2) mGy/MBq for the ovaries and 0.9E−2 (± 0.39E−2) mGy/
MBq for the testicles. Absorbed dose coefficients for all target organs are listed in Fig. 3.

The equivalent dose coefficients ranged from 1.49 to 1.70 mSv/MBq with an average 
of 1.62E−2 (± 0.86E−3) mSv/MBq. Range for the detriment weighted dose (EDW) coef-
ficient was similar from 1.45 to 1.92 mSv/MBq with an average EDW across subjects of 
1.63E−2 (± 1.68E−3). This corresponded to an EDW of 2.12 to 2.32 mSv for the injected 
doses, or 5.51–6.48 mSv for a hypothetical dose of 370 MBq (Table 3).

Discussion
This is the first report on biodistribution and dosimetry of the new TrkB/C receptor 
ligand [18F]TRACK in healthy humans.

The average equivalent dose coefficient estimate was 16.3 µSv/MBq or 6.00 mSv for a 
standard injected dose of 370 MBq. Following injection, [18F]TRACK is rapidly distrib-
uted throughout the body with rapid uptake in liver, lungs, kidneys and brain. Consist-
ent with the mainly hepatobiliary elimination, organ absorbed doses were high in the 
liver, gallbladder, and kidneys.

The equivalent dose coefficient estimates are well within the range of those for other 
18F-labelled radiotracers (Jackson et al. 2020) such as [18F]FDG (19 µSv/MBq) or [18F]
DOPA (26 µSv/MBq) (Kaushik et al. 2013), and those 18F-labelled tracers with primar-
ily hepatobiliary elimination like Florbetapir (18.6 µSv/MBq) (Joshi et  al. 2014). With 
appropriate adjustment of the injected dose, these dosimetry results will allow for 
repeated measurements in the same subjects without exceeding dose limitations in 
most jurisdictions (Jackson et al. 2020), which may be of interest when studying TrkB/C 
receptor density in neurodegeneration or during recovery from focal brain injury. The 
dosimetry model used in this study (Carter et al. 2021; Kesner et al. 2018) on average 
accounted for 89.7% of injected activity with the residual activity accumulated below the 
knees outside the field of view and to some extent at the wall of the injection tubing due 
to lipophilicity of the tracer.

Conclusion
In conclusion, [18F]TRACK, the first radiotracer for in vivo imaging of TrkB/C receptor 
density has a dosimetry profile that is similar to other 18F-labelled radiotracers currently 
used in clinical settings.
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Abbreviations
Trk	� Tropomyosin receptor kinases
Am	� Molar activity
TAC​	� Time-activity curve
MIRD	� Medical Internal Radiation Dose
CNS 	� Central nervous system
NGF	� Nerve growth factor
BDNF	� With brain-derived neurotrophic factor
NT4	� Neurotrophin-4
NT-3	� Neurotrophin 3
AD	� Alzheimer’s disease
OSEM	� Ordered Subset Expectation Maximization
TIA	� Time integrated activity
TIAC	� Time integrated activity coefficients
E	� Effective dose
EDW 	� Detriment weighted dose

Fig. 3  Average time activity curves for all source organs
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