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Abstract 

Background: c‑MET is a transmembrane receptor involved in many biological 
processes and contributes to cell proliferation and migration during cancer invasion 
process. Its expression is measured by immunehistochemistry on tissue biopsy in clinic, 
although this technique has its limitations. PET‑CT could allow in vivo mapping 
of lesions expressing c‑MET, providing whole‑body detection. A number of radiophar‑
maceuticals are under development for this purpose but are not yet in routine clinical 
use. EMP100 is a cyclic oligopeptide bound to a DOTA chelator, with nanomolar affinity 
for c‑MET. The aim of this project was to develop an automated method for radiolabel‑
ling the radiopharmaceutical  [68Ga]Ga‑EMP100.

Results: The main results showed an optimal pH range between 3.25 and 3.75 
for the complexation reaction and a stabilisation of the temperature at 90 °C, resulting 
in an almost complete incorporation of gallium‑68 after 10 min of heating. In these 
experiments, 90 µg of EMP‑100 peptide were initially used and then lower amounts 
(30, 50, 75 µg) were explored to determine the minimum required for sufficient 
synthesis yield. Radiolysis impurities were identified by radio‑HPLC and ascorbic acid 
and ethanol were used to improve the purity of the compound. Three batches of  [68Ga]
Ga‑EMP100 were then prepared according to the optimised parameters and all met 
the established specifications. Finally, the stability of  [68Ga]Ga‑EMP100 was assessed 
at room temperature over 3 h with satisfactory results in terms of appearance, pH, 
radiochemical purity and sterility.

Conclusions: For the automated synthesis of  [68Ga]Ga‑EMP100, the parameters of pH, 
temperature, precursor peptide content and the use of adjuvants for impurity man‑
agement were efficiently optimised, resulting in the production of three compliant 
and stable batches according to the principles of good manufacturing practice.  [68Ga]
Ga‑EMP100 was successfully synthesised and is now available for clinical development 
in PET‑CT imaging.
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Background
c-MET is a transmembrane receptor with tyrosine kinase activity that is activated by 
its physiological ligand, hepatocyte growth factor. This receptor plays a key role in 
many physiological processes (embryogenesis, wound healing, etc.). When involved 
in cancer biology, it activates several intracellular signaling pathways leading to 
increased proliferation, migration and metastasis of cancer cells through the epithelial-
mesenchymal transition process (Sung et  al. 2016). This aberrant signalling is found 
in many primary cancers, including kidney, colorectal and non-small cell lung cancer 
(NSCLC) (Baldacci et  al. 2018; Duplaquet et  al. 2018; Gherardi et  al. 2012; Ma et  al. 
2008; Salgia 2017; Zhang et al. 2018).

Currently, in routine clinical practice, patient eligibility for targeted MET therapy 
is determined on tissue biopsy by immunohistochemistry (IHC) using the specific 
antibody SP44 (Spigel et al. 2014), by fluorescent in situ hybridisation (FISH) or by next-
generation sequencing (NGS) of the MET gene. However, these techniques, especially 
IHC, have limitations as they do not reflect the variability of c-MET expression over 
time, nor the heterogeneity within a tumour lesion or between different tumour sites. 
In addition, they rely on the availability of tissue samples, which is not always the case, 
especially for locations that are inaccessible for biopsy.

Macroscopic PET-CT nuclear imaging has the potential to map c-MET-expressing 
lesions throughout the body overcoming most of the limitations of the conventional 
patho-molecular techniques used. Moreover, PET-CT molecular imaging provides non-
invasive, real-time detection with high sensitivity and specificity, and allows quantita-
tive analysis of binding intensity using standardized uptake value (SUV) measurement 
or derived quantification methods. To date, a number of radiopharmaceuticals (RPs) 
targeting the MET pathway, such as antibodies, peptides or small molecules, have been 
radiolabelled to detect the sites of various cancers  ([64Cu]Cu-NOTA-rh-HGF,  [89Zr]Zr-
onartuzumab,  [18F]F-AH113804,  [11C]C-SU11274) (Luo et  al. 2015; Jagoda et  al. 2012; 
Arulappu et al. 2016; Wu et al. 2010), but there is currently no routine clinical use for 
them. Targeted therapies for the MET pathway are based mainly on tyrosine kinase 
inhibitors such as (crizotinib, capmatinib and tepotinib) (Remon et al. 2023), the MET-
specific monoclonal antibody onartuzumab (Spigel et al. 2017) or the drug conjugated 
antibody ABBV-399 (Wang et al. 2017). However, a specific c-MET radioligand in PET 
could open the way to radioligand therapy, such as in prostate cancer with prostate 
specific membrane antigen (PSMA) ligand (Sartor et  al. 2021) or in neuroendocrine 
tumours with somatostatin ligand (Strosberg et al. 2017). Among these RPs can be found 
EMP100, which is a cyclic oligopeptide (Fig. 1) with nanomolar affinity for the human 

Fig. 1 [68Ga]Ga‑EMP100
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c-MET receptor linked to a DOTA chelator, as measured by fluorescence polarization 
(3.0 ± 0.5 nM—unpublished results). The oligopeptide was shown to have no pharmaco-
logical effect on the HGF/c-Met pathway and was shown not to compete with the native 
ligand. Gallium-68 radiolabelled EMP100 was investigated in a cohort of 12 metastatic 
renal cell carcinoma (mRCC) patients with very encouraging results by Mittlmeier et al. 
(2021). However, in this study the radiolabelling of  [68Ga]Ga-EMP100 was performed 
manually. The aim of the present work is to develop an automated method for radiola-
belling the EMP-100 peptide with gallium-68 to obtain the RP  [68Ga]Ga-EMP100.

Methods
Chemical precursors, reagents, radionuclide and synthesis module

The EMP100 peptide in lyophilised powder form (30, 50, 75, 90 µg vials) and the  [natGa]
Ga-EMP100 standard (500 µg vial) were supplied by Edinburgh Molecular Imaging.

ABX (Advanced Biochemical Compounds, Radeberg, Germany) provided all necessary 
radiolabel materials in a GMP-compliant single-use kit: 0.08 mol/L ammonium acetate 
buffer, 60% pure ethanol solution, ascorbic acid, 0.9% NaCl saline, water for injection 
(WFI, BBraun), eluent solution (5  mol/L NaCl, 0. 1  mol/L HCl), cationic SCX (Bond 
Elut®, Agilent) and C18 reversed-phase columns (Sep-Pack®, Waters), 0.22  µm filter 
(Millex-GV®, Merck Millipore LTd.) and sterile vials for the final product, with ultrapure 
gentisic acid provided by Sigma-Merck.

The gallium-68 eluate was obtained by elution of one or two 68Ge/68Ga generators 
Galliapharm® (Eckert and Ziegler GmbH, Germany). The automated synthesis of  [68Ga]
Ga-EMP100 was performed on the GAIA synthesis module (Elysia Raytest, Belgium), 
placed in a high energy class A laminar air flow hot cell MEDI 5000® (Medisystem, 
France). This module allows the entire process to be edited and controlled by a computer 
program.

Description of the radiolabelling process

EMP100 is dissolved with acetate ammonium buffer and then transferred to the reaction 
vial. The process began with the collection of gallium-68 eluate from the generators on 
a SCX column, which was then washed from impurities by water for injection (WFI). 
Gallium-68 was eluted from the SCX column using a 5 mol/L NaCl; 0.1 mol/L HCl solu-
tion. The reaction vial containing the EMP100 precursor, gallium-68 ions and adjuvants, 
was buffered to acidic pH and heated. This was then transferred to a C18 column to trap 
the  [68Ga]Ga-EMP100 compound by lipophilic affinity, with the remaining impurities 
discharged into the waste. The C18 column was then washed with WFI and finally the 
 [68Ga]Ga-EMP100 compound was eluted from the column with a mixture of saline and 
ethanol and then transferred to the final product vial through a 0.22 µm filter. The total 
radiolabelling time for this fully automated process was approximately 42 min (Fig. 2).

Optimisation of the radiolabelling process

The three main objectives of radiolabelling optimisation are to improve product 
quality through a number of specific parameters. Firstly, radiochemical purity 
(RCP) is controlled and must exceed 95% (EMA. European Medicines Agency 
2022, 2018a;  Revised guidance for elaborating monographs on radiopharmaceutical 
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preparations: new section on validation of methods 2019). Second, the molar activity 
(MA) must be greater than 10  GBq/µmol: at this stage of development, this value 
was chosen based on the current knowledge of needed ratio between ‘hot’ and ‘cold’ 
compound in the final product as well as commonly achieved values for agents at 
this stage of development (Bailly et  al. 2017; Spreckelmeyer et  al. 2020a, b; Jussing 
et al. 2021). Finally, the target activity at the time of calibration should be greater than 
500 MBq, which, combined with a radiochemical yield (RCY) greater than 50%, allows 
imaging of at least one patient regardless of generator elution yield.

In order for the complexation reaction of  Ga3+ ions with the oxygen and nitrogen 
atoms of the DOTA chelate to proceed without problems, the pH must be acidic, 
preferably buffered between 3.0 and 4.0, with a heat supply (Green and Welch 1989; 
Kubíček et al. 2010).

To identify the optimal parameters for the complexation of EMP-100 with gallium-68, 
we used a systematic optimisation approach based on a design of experiments. The opti-
mal parameters for the complexation of EMP-100 with gallium-68 were determined by 
adjusting the pH (2.75–4.00), temperature (80, 85, 90, 95  °C), heating time (0, 5, 8, 10 
and 15 min) with the amount of peptide fixed at 90 µg and without adjuvants. For these 
first 3 parameters, the RCP > 95% measured by thin layer chromatography (TLC) was the 
limiting factor for defining the optimised parameter. We performed these experiments 
in manual mode using the SCX eluate from the module without passing through the C18 
column. We then heated the reaction vial using an Elite® heating block (Major Science, 
Taiwan). In a subsequent step, using the GAIA® module (Elysia Raytest, Belgium) and 
C18 purification, we optimised the amount of EMP-100 peptide (30, 50, 75, 90 µg) and 
the effect of adjuvants (ethanol, ascorbic acid and gentisic acid) on the quality of  [68Ga]

Fig. 2 Automated radiolabelling process of  [68Ga]Ga‑EMP100



Page 5 of 15Rusu et al. EJNMMI Radiopharmacy and Chemistry            (2023) 8:30  

Ga-EMP100 in the final product. Optimisation criteria included RCP measured by TLC 
and HPLC (> 95%), RCY (> 50%) and molar activity (MA) (> 10 GBq/µmol).

The RCP was determined by TLC using a mixture of 1 mol/L ammonium acetate and 
methanol (1:1), while the RCY was calculated according to the following formula:

C18 and SCX activities are automatically recorded during radiolabelling and are 
available in the final report.

Validation of quality controls and 3 batches

As the compound  [68Ga]Ga-EMP100 does not have a monograph in the 
European Pharmacopoeia (Ph. Eur.), we followed the general text Ph. Eur. 0125 
(Radiopharmaceuticals) and Ph.Eur. 51900 (Extemporaneous preparation of 
radiopharmaceuticals) (Ph. Eur. 11th Edition 2022).

After each radiolabelling, an aliquot of the final  [68Ga]Ga-EMP100 product was taken 
for quality control, which included the following parameters.

Appearance

Visual inspection of the solution behind a lead glass screen was used to verify that the 
solution was clear and colorless.

Measurement of activity and calculation of molar activity

A MEDI-405® activimeter (Medisystem, France) was used to measure the final 
radioactivity of the  [68Ga]Ga-EMP100 product, expressed in MBq, with a lower limit of 
500 MBq per 10 mL. The molar activity (MA) was calculated by dividing the radioactivity 
(GBq) by the amount of precursor peptide (µmol). The lower limit of determination was 
10 GBq/µmol.

Radionuclide identity

The gallium-68 radionuclide decays by the emission of positrons, whose 
dematerialisation results in 511  keV gamma photons, which were identified using a 
Mucha® gamma counter (Elysia Raytest, Belgium). The half-life of the radionuclides 
in the final product, assumed to be gallium-68 only, was determined by a five-point 
decay test using a MEDI 405® activimeter. The half-life at each point was measured and 
calculated according to the monographs Ph. Eur. 0125 and Ph. Eur. 2482, which should 
be between 61 and 75 min (Ph. Eur. 11th Edition 2022).

Radiochemical identity and purity

Thin layer chromatography A 5 µL sample of the final product was applied to a solid 
iTLC-SG paper stationary phase (Agilent, US) for migration into a mobile phase of 1 M 
ammonium acetate and methanol (1:1). The compounds were characterised by a retarda-
tion factor (Rf ), which reflects the migration distance of the compound relative to the 
spotting line. The  [68Ga]Ga-EMP100 has an Rf > 0.8, while free gallium-68 impurities and 

RCY =

C18 activity before elution− C18 activity after elution

SCX initial activity measured on SCX
∗ 100



Page 6 of 15Rusu et al. EJNMMI Radiopharmacy and Chemistry            (2023) 8:30 

colloidal forms have an Rf < 0.1. The RCP by TLC must be greater than 95%. The TLC 
papers were analysed using a miniGITA® scanning radiochromatograph (Elysia Raytest, 
Belgium) and peak integration was performed using GINA® software (Elysia Raytest, Bel-
gium).

High performance liquid chromatography (HPLC) In accordance with ICH Q2 (R1) 
standards and RP recommendations (Revised guidance for elaborating monographs on 
radiopharmaceutical preparations: new section on validation of methods 2019; Gillings 
et al. 2020; Todde et al. 2014; Tietje et al. 2010; EMA. European Medicines Agency 2018b), 
an HPLC method was developed and validated on a Nexera-i LC 2040C 3D® instrument 
(Shimadzu, Japan) coupled in series with a diode array detector for UV absorbance detec-
tion at 220 nm and 280 nm and a GABI Nova® radioactivity detector (Elysia Raytest, Bel-
gium) for 511 keV photon detection. The reversed phase column used for separation was 
a Luna Omega 3 µm PS C18® 100 Å, 100 × 4.6 mm (Phenomenex, US). Injections of 5 µL 
were made at a fixed flow rate of 1 mL/min using a gradient elution mode with solvents 
A (water/0.1% formic acid), B (acetonitrile/0.1% formic acid) over a period of 12 min. The 
following phase gradient was applied: 0–1.7 min B 3%, 1.7–8 min B 70%, 8–9 min B 70%, 
9–12 min B 3%.

The GINA X® software (Elysia Raytest, Belgium) was used to integrate the different 
peaks.

The retention time (Rt) of the compound of interest  [68Ga]Ga-EMP100 was 
expected to match the retention time of the "cold" standard  [natGa]Ga-EMP100 ± 5%.

Radiochemical purity limits were set for colloidal gallium-68 and free gallium-68 
detectable by radio-HPLC and/or TLC.

HPLC was used for chemical and radiochemical identification of the various species 
likely to be present in the final solution:  [68Ga]Ga-EMP100, EMP100, degradation or 
radiolysis products and the free gallium-68 species.

The overall RCP of the compound of interest  [68Ga]Ga-EMP100 was calculated 
using the following formula

where A is the percentage of gallium-68 impurities in free and colloidal form calculated 
by TLC and B is the percentage of  [68Ga]Ga-EMP100 determined by HPLC. We have set 
a target of 95% for the RCP (overall) of  [68Ga]Ga-EMP100.

Radionuclide purity

Each 68Ge/68Ga Galliapharm® generator was checked on receipt for germanium-68 
breakthrough (< 0.001% according to the  [68Ga]GaCl Ph. Eur. 2464 monograph). The 
511  keV peak due to germanium-68 emissions was measured after elution using a 
Mucha® gamma counter.

RCP =

(100− A)× B

100
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pH evaluation

For the experiments performed in manual mode, we measured the pH using a Seven-
compact duo S213® pH meter (Mettler Toledo) after decay, and for the experiments per-
formed in automated mode, we measured the pH using test strips (VWR and Sigma).

Endotoxin, sterility testing and residual solvents

Endotoxin testing or pyrogen evaluation was performed using a chromogenic method 
on the Endosafe Nexgen® instrument (Charles River, Ireland) with a specification of 
less than 17.5  IU/mL (Ph. Eur.  11th Edition 2022). Sterility of the finished product 
was assessed by inoculation into a culture medium after decay (> 48 h) and absence of 
growth for 14 days, as described (Ph. Eur. 11th Edition 2022).

Ethanol, used to stabilise the complex during the heating step and to elute the prod-
uct in the purification step, must be less than 10% in the final product (Ph. Eur. 11th 
Edition 2022). Ethanol is quantified by gas chromatography (GC) (Ph. Eur. 50400).

Assessment of reproducibility and stability

Three batches of  [68Ga]Ga-EMP100 were produced to validate the radiopharmaceu-
tical production and quality control process, and each was thoroughly analysed to 
ensure that all quality parameters met the acceptance criteria. The stability of  [68Ga]
Ga-EMP100 was evaluated over a period of 3 h at room temperature, with RCP meas-
ured by TLC and HPLC.

Results
Optimisation and validation of  [68Ga]Ga‑EMP100 radiolabelling

The first result of the radiolabelling optimisation was the identification of the opti-
mal pH range between 2.75 and 4.00, which was achieved by varying the volume of 
0.08 mol/L ammonium acetate between 1700 and 4400 µL and measuring the effect 
on the RCP measured by TLC (Table  1), keeping the temperature and heating time 
at 90 °C for 10 min constant. The highest RCP was obtained with a buffer volume of 
2500 µL, corresponding to a pH of 3.75.

Subsequent investigations were carried out on the influence of heating time at a sta-
ble temperature (90 °C), measuring the incorporation of gallium-68 by assessing the 
RCP at different time points (0, 5, 8, 10 and 15 min). A duration of 10 min was found 
to ensure almost complete incorporation (Table 2).

Table 1 Complexation pH study of  [68Ga]Ga‑EMP100

pH (n = 3) 2.75 3.00 3.25 3.50 3.75 4.00

RCP TLC (%) ± SD 58 ± 0.4 71 ± 12 91 ± 10 90 ± 17 94 ± 10 55 ± 44

Table 2 Study of the complexation time of  [68Ga]Ga‑EMP100

Heating time (n = 1) 0 5 8 10 15

RCP TLC (%) 67 97 95 99 99
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The effect of complexation temperature was then investigated at 80, 85, 90 and 
95 °C, with pH and duration maintained at 3.75 and 10 min, respectively. Complexa-
tion was found to be almost complete at temperatures of 90 °C and above (Table 3).

Throughout the above optimisation steps, 90  µg of EMP100 peptide precursor was 
consistently used and RCP by TLC was performed prior to C18 according to the manual 
mode described above. Smaller amounts of peptide precursor (30, 50, 75 µg) were tested 
to determine the minimum amount required for satisfactory synthesis yield. Satisfactory 
RCP (> 95%) and RCY (> 50%) were obtained with 75 µg of precursor peptide (Table 4).

When measuring the chemical identity by radio-HPLC, we observed radioactivity 
peaks that most likely correspond to radiolysis impurities or incomplete radiolabelling 
(Fig. 3b, Table 5 (Test identification number 1)).

Table 3 Study of the complexation temperature of  [68Ga]Ga‑EMP100

Temperature (n = 1) 80 85 90 95

RCP TLC (%) 70 96 98 99

Table 4 Summary of the QC data for  [68Ga]Ga‑EMP100 according to the amount of peptide (n = 3 
or more for each point)

Amount of EMP100 peptide 30 µg 50 µg 75 µg 90 µg
8 nmol 13 nmol 20 nmol 24 nmol

RCP TLC (%) ± SD 78 ± 8 89 ± 13 96 ± 3 99 ± 1

RCY n.c.d (%) ± SD 27 ± 7 42 ± 15 57 ± 5 69 ± 5

Molar activity (GBq/µmol) ± SD 28 ± 15 31 ± 8 22 ± 11 23 ± 9

Fig. 3 HPLC chromatogram showing: a the peak of the cold standard  [natGa]Ga‑EMP100 (UV 220 nm), b 
peaks of free  [68Ga]Ga3+ and  [68Ga]Ga‑impurities due to radiolysis before the  [68Ga]Ga‑EMP100 peak after 
synthesis without adjuvants, c the peak of  [68Ga]Ga‑EMP100 after synthesis with adjuvants
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To reduce radiolysis oxidation and stabilise the reaction mixture, we introduced adju-
vants such as ascorbic acid, gentisic acid and ethanol prior to the heating step. Initial 
tests with all three adjuvants gave consistent results as reflected in the RCP and RCY 
data (Table 5 (column 2), Fig. 3c). Then we tested the combination of ethanol with ascor-
bic acid on a series of radiolabelling and all batches were within specifications (Table 5 
(column 3), Fig. 3c).

Three batches of  [68Ga]Ga-EMP100 were prepared under the optimised synthesis 
parameters (pH 3.75, heating temperature 90 °C for 10 min, 75 µg precursor EMP100, 
with ascorbic acid and ethanol added as adjuvants). All three batches were found to be 
within the defined specifications (Table 6).

The stability of  [68Ga]Ga-EMP100 was assessed over 3 h in the finished product vial 
at room temperature, measuring appearance, pH, radiochemical purity, and sterility. 
Results remained within established specifications (Table 7).

Discussion
Here we describe the pharmaceutical development and validation of an automated 
method and quality control system for gallium-68 labelling with a c-MET ligand 
(EMP100) using the Gaia Luna® module.

Gallium-68 is a positron emitter that is readily detectable in PET-CT imaging and has 
the advantage of being readily available in hospitals thanks to 68Ge/68Ga generators. As 
a result, gallium-68 radiopharmaceuticals can be prepared on site without the need for a 
medical cyclotron. Automated systems are a good solution for gallium-68 radiolabelling 
because they are more reliable, more reproducible and guarantee consistent yields. 
As clinical demand increases, process automation also improves operator radiation 
protection compared to manual methods and meets regulatory requirements.

We have developed a method for radiolabelling EMP100 peptide precursor with gal-
lium-68 using a Gaia Luna® module (Elysia Raytest) to obtain  [68Ga]Ga-EMP100. This 
method has many advantages. Firstly, by trapping the gallium-68 eluate on a cationic col-
umn prior to the radiolabelling process, the radioactivity can be concentrated, allowing 
pooling of generator elution to achieve higher activities. Another advantage of cationic 
eluate purification is the ability to remove concentrations of zinc ions (from gallium-68 
decrease) and other metallic impurities that could compete with gallium-68 labelling 
reactions. The cationic SCX method also allows control of the volume of the reaction 

Table 5 Summary of  [68Ga]Ga‑EMP100 QC data by adjuvant

Test identification number 1 2 3

n 6 2 13

Nature of added excipients

Ascorbic acid − + +
Ethanol − + +
Gentisic acid − + −
Main results

RCP radio‑TLC (%) ± SD 96 ± 3 100 99 ± 1

RCP radio‑HPLC (%) ± SD 98 ± 2 100 99.5 ± 0.4

RCY (n.c.d) (%) ± SD 55 ± 9 70 ± 4 68 ± 7
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Table 6 Results of radiolabelling of  [68Ga]Ga‑EMP100 according to Ph. Eur. 51900

Test Method Specifications Batch 1 Batch 2 Batch 3

Aspect Visual Clear, colourless 
solution

Yes Yes Yes

Radioactivity Activimeter > 500 MBq 1025 MBq 1065 MBq 1084 MBq

Radioactivity  
concentration

Activimeter > 50 MBq/mL 102.5 MBq/mL 106.5 MBq/mL 108.4 MBq/mL

Molar activity Activimeter > 10 GBq/µmol 51 GBq/µmol 53 GBq/µmol 54 GBq/µmol

Chemical identifica‑
tion

Radio‑HPLC Rt  [68Ga]Ga‑
EMP100 = Rt Stand‑
ard ± 5%

+ 0.47% + 0.62% + 0.46%

Radio‑TLC 1M AcNH4 
Methanol (1:1)

[68Ga]Ga‑EMP100: 
Rf = [0.8;1]

Rf = 0.9 Rf = 1 Rf = 0.9

[68Ga]Ga‑colloidal: 
Rf = [0;0.1]

Rf = 0 Rf = 0 Rf = 0

Radiochemical purity Radio HPLC RCP  [68Ga]Ga‑
EMP100 > 95.00%

99.64% 99.70% 99.82%

Free  [68Ga]
GaCl3 ≤ 5%

0.36% 0.30% 0.18%

Radio TLC 1M AcNH4 
Methanol (1:1)

[68Ga]Ga‑
EMP100 > 95%

99.44% 99.75% 99.99%

[68Ga]Ga‑colloi‑
dal ≤ 5%

0.56% 0.25% 0.01%

RCP (overall) [68Ga]Ga‑EMP100 
(overall) > 95.00%

99.08% 99.45% 99.81%

pH value pH‑strips 4.0–8.0 6.0 6.0 6.0

Bacterial endotoxins LAL‑test < 17 EU/mL < 5 EU/mL < 5 EU/mL < 5 EU/mL

Radionuclidic  
identity

Half‑life  [68Ga]
Ga = 67.6 min

Measured:61–75 min 64.92 min 68.23 min 68.13 min

Gamma spectrom‑
etry

0.511 MeV 0.511 MeV 0.511 MeV 0.511 MeV

Radionuclidic purity Gamma spectrom‑
etry

[68Ge]Ge < 0.001% 1.12 ×  10–5 1.08 ×  10–5 0.95 ×  10–5

RCY (n.d.c.) GAIA report > 50% 75% 72% 75%

Filter integrity test 
(GAIA)

Membrane filtration 
bubble point test

YES or NO Yes Yes Yes

Sterility Inoculation 14 days 
(Ph Eur 20601)

Sterile Sterile Sterile Sterile

Residual solvents GC Ethanol max 10% 
(v/v)

8.14% 7.74% 6.85%

Table 7 Results of  [68Ga]Ga‑EMP100 stability study in final vial

Test Method Specifications Batch 1 Batch 2 Batch 3

Aspect Visual Clear, colourless solution Yes Yes Yes

pH value pH‑strips 4.0–8.0 6.0 6.0 6.0

Stability 
over 3 h 
(RCP %)

Radio HPLC [68Ga]Ga‑EMP100 > 95,00% 98.63% 98.87% 99.52%

Free  [68Ga]GaCl3 ≤ 5% 1.37% 1.13% 0.48%

Radio TLC AcNH4 1 M Methanol 
(V/V)

[68Ga]Ga‑EMP100 > 95% 99.85% 99% 99.91%

[68Ga]Ga‑colloidal ≤ 5% 0. 15% 1.00% 0.09%

RCP (overall) [68Ga]Ga‑EMP100 
(overall) > 95.00%

99.08% 97.87% 99.43%

Sterility Inoculation 14 days (Ph Eur 
20601)

Sterile Sterile Sterile Sterile
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mixture, ensuring constant pH and reproducible complexation of gallium ions by the 
chelator (Velikyan 2015; Mueller et  al. 2012; Zhernosekov et  al. 2007; Meisenheimer 
et al. 2020; Nelson et al. 2022).

To achieve successful radiolabelling of EMP100, we optimised the critical production 
parameters such as pH, heating time, complexation temperature and amount of peptide. 
The optimum reaction pH was found to be 3.75 using ammonium acetate buffer. The 
pH of the buffer plays an important role in radiolabelling procedures, particularly with 
gallium-68, and the reaction kinetics for 68Ga3+ incorporation is inversely related to pH 
(Bartholomä et  al. 2010; Bnzeth et  al. 1994). We observed the best radiolabelling effi-
ciency at pH 3.75 and note that at pH 4, hydrolysis to insoluble 68Ga(OH)3 occurs in 
the preparation, as the radiolabelling process is inconsistent at low to normal RCP. This 
range of pH is in agreement with previously published results for the manual radiola-
belling of  [68Ga]Ga-EMP100, carried out by fractionated elution of gallium-68, where 
the pH used was between 3.7 and 4.0, obtained using sodium acetate (Mittlmeier et al. 
2021). The reaction temperature was then investigated: this is an important factor since, 
above a certain temperature, gallium-68 ions can form both gallium oxides and hydrox-
ides as precipitates (Silva et al. 2009), and some biological compounds, such as peptides, 
can be thermolabile and undergo degradation or denaturation, thus affecting the quality 
of the final RP (Lepareur 2022). While published data show radiolabelling at 95  °C for 
15 min, our investigations show that incorporation is complete after 10 min and that a 
heating temperature of 90 °C is sufficient for complete complexation.

Molar activity (GBq/µmol) is an important parameter in PET imaging. When the 
biological target concentration is minimal, image quality and quantification can be 
improved by a high MA, as has been shown for GLP-R (Velikyan 2015; Velikyan et al. 
2017, 2008; Migliari et  al. 2022; Eriksson et  al. 2014) for insulinoma imaging using 
ligands such as exendin-4. In particular, the presence of unlabelled peptide can reduce 
the concentration of radioactivity in the target tissue due to competition with the 
labeled peptide for the same receptor. In a manual process, Mittlmeier et al. (2021) used 
100 µg of EMP100 precursor, corresponding to 27 nmol. In this study, we investigated 
different amounts to find the minimum required and found that above 75 µg of peptide 
(equivalent to 20 nmol), a sufficient synthesis yield is achieved, i.e. above 50%, with an 
RCP in line with specifications.

During radiolabelling of  [68Ga]Ga-EMP100, gallium-68 atoms decay, emitting gamma 
and beta radiation. In the presence of water molecules in the solution, this radiation 
generates oxygenated free radicals. These radical species are capable of oxidising cer-
tain biological molecules, particularly thiol groups and certain amino acids (methio-
nine, cysteine, isoleucine) (Velikyan 2015; Meisenheimer et al. 2020; Velikyan et al. 2017; 
Janota et al. 2016). During the initial measurement of chemical identity by radio-HPLC, 
we observed gallium-68 peaks, probably corresponding to radiolysis impurities, at ear-
lier retention times compared to the main  [68Ga]Ga-EMP100 peak. To reduce the oxi-
dative effect of radiolysis and to further stabilise the reaction medium, we introduced 
various adjuvants known to have antioxidant effects and found consistent results in 
terms of RCP, RCY and radiochemical identification when the combination of the two 
excipients (ascorbic acid and ethanol) were added.
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Finally, three consecutive batches of  [68Ga]Ga-EMP-100 were produced according to 
the parameters defined during optimisation and were found to meet the defined specifica-
tions. In addition, the product was found to be stable 3 h after radiolabelling. Based on a 
starting activity of 1500 MBq, automated radiolabelling yielded approximately 1000 MBq 
of final product with a final MA of 50 GBq/µmol. This would be sufficient to image 2 or 3 
(70 kg) patients at 2.0 MBq/kg body weight with a single PET camera, as with the gallium-
68-labelled radiopharmaceuticals  [68Ga]Ga-PSMA-11 (EMA. European Medicines Agency 
2022; Fourquet et al. 2021) and  [68Ga]Ga-DOTATOC (EMA. European Medicines Agency 
2018a; Delabie et al. 2022; Moreau et al. 2022) already used in clinical routine.

This robust automated radiolabelling process helps to achieve the highest pos-
sible MA, i.e. with the smallest amount of peptide that allows sufficient gallium-68 
incorporation yield. In clinical practice, this starting MA allows injection of  [68Ga]
Ga-EMP100 even after a decay time of up to 2 h, although the MA is lower than the 
specification (10 GBq/µmol).

Conclusion
For the automated radiolabelling of  [68Ga]Ga-EMP100, the parameters of pH, 
temperature, precursor peptide content, and the use of adjuvants for impurity 
management were efficiently optimised, resulting in the production of 3 compliant 
and stable batches according to the principles of good manufacturing practice. 
 [68Ga]Ga-EMP100 was successfully synthesised and is now available for clinical 
development in PET-CT imaging.
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