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Abstract

Traditional nuclear medicine ligands were designed to target cellular receptors or
transporters with a binding pocket and a defined structure–activity relationship. More
recently, tracers have been developed to target pathological protein aggregations, which
have less well-defined structure–activity relationships. Aggregations of proteins such as
tau, α-synuclein, and β-amyloid (Aβ) have been identified in neurodegenerative diseases,
including Alzheimer’s disease (AD) and other dementias, and Parkinson’s disease (PD).
Indeed, Aβ deposition is a hallmark of AD, and detection methods have evolved from
coloured dyes to modern 18F-labelled positron emission tomography (PET) tracers. Such
tracers are becoming increasingly established in routine clinical practice for evaluation of
Aβ neuritic plaque density in the brains of adults who are being evaluated for AD and
other causes of cognitive impairment. While similar in structure, there are key differences
between the available compounds in terms of dosing/dosimetry, pharmacokinetics, and
interpretation of visual reads. In the future, quantification of Aβ-PET may further improve
its utility. Tracers are now being developed for evaluation of tau protein, which is
associated with decreased cognitive function and neurodegenerative changes in AD,
and is implicated in the pathogenesis of other neurodegenerative diseases. While no
compound has yet been approved for tau imaging in clinical use, it is a very active area
of research. Development of tau tracers comprises in-depth characterisation of existing
radiotracers, clinical validation, a better understanding of uptake patterns, test-retest/dosimetry
data, and neuropathological correlations with PET. Tau imaging may allow early,
more accurate diagnosis, and monitoring of disease progression, in a range of conditions.
Another marker for which imaging modalities are needed is α-synuclein, which has
potential for conditions including PD and dementia with Lewy bodies. Efforts to develop
a suitable tracer are ongoing, but are still in their infancy. In conclusion, several PET
tracers for detection of pathological protein depositions are now available for clinical use,
particularly PET tracers that bind to Aβ plaques. Tau-PET tracers are currently in clinical
development, and α-synuclein protein deposition tracers are at early stage of research.
These tracers will continue to change our understanding of complex disease processes.
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Introduction
Traditionally, nuclear medicine ligands were primarily designed for targeting cellular re-

ceptors or transporters. They were tightly bound, and often internalized or transported

into the cell and trapped inside by metabolic transformation, while unbound ligand was

cleared. More recently, a class of imaging tracers has become available whose members

bind misfolded protein aggregates. This new paradigm requires different lead optimization,
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different types of analysis, and quantitation. Previous approaches targeted a binding pocket

where derivatives of ligands displayed a defined structure-activity relationship. Examples of

protein aggregate imaging include Aβ, tau, and α-synuclein. Such investigations required

the design of a molecule that binds to β-sheets. The structure–activity relationship is less

well defined, as no distinct binding pockets are present. Importantly, all protein depositions

show a similar structural motif, and achievement of selectivity is the most important

optimization goal. Nonetheless, protein sequence and aggregate structures are different

enough that highly specific imaging agents have been developed for some of these targets.

Pathological protein depositions have been identified in a range of neurodegenerative

diseases (Mollenhauer & Trenkwalder 2009). Tau and 43-kDa Tar DNA-binding protein

(TDP-43) are present in neurofibrillary tangles characteristic of frontotemporal lobar

degeneration and AD; Aβ plaques are the hallmark of AD; and α-synuclein has been

identified in the pathognomonic bodies of diffuse Lewy body disease and PD. An overview

of the misfolded protein depositions discussed in this article, with their associated histo-

pathology and clinical manifestation, is presented in Fig. 1.

Co-pathologies have also been observed, in which more than one protein forms a deposition.

Identification of in vivo biomarkers for such conditions will improve diagnosis and classification

of patients, provide prognostic information, and improve the efficiency of drug development.

This paper will discuss some of the new positron emission tomography (PET) tracers that are

being developed to target misfolded protein depositions such as Aβ, tau, and α-synuclein.

Review
Established protein tracers–detection of Aβ plaques

AD is a chronic neurodegenerative disease that can now be detected in vivo by biomarkers years

before clinical manifestation. The deposition of Aβ plaques is considered one hallmark in the
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Fig. 1 Schematic summary of key proteins present in frontotemporal lobar degeneration, Alzheimer’s disease,
diffuse Lewy body disease and Parkinson disease. Protein monomers and their distribution for different clinical
phenotypes are illustrated with symbolic drawings. Exemplary histopathology images are presented for TDP-43
inclusion, neurofibrillary tau tangles (immunohistochemistry with antibody AT8), amyloid-beta deposition
(immunohistochemistry with monoclonal 6E10 Aβ antibody), and α-synuclein Lewy body inclusions (Images
of TDP-43 inclusions, tau tangles, and Aβ deposits courtesy of Walter Schulz-Schaeffer, Goettingen, Germany)
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pathogenesis of AD, and a hypothetical model of biomarker temporal evolution has been pro-

posed that matches the sequence of molecular events proposed in the amyloid cascade hypoth-

esis (Jack & Holtzman 2013). The model begins with Aβ42 overproduction and aggregation,

with decreased clearance, followed by plaque formation. Thus Aβ-PET and cerebrospinal fluid

(CSF) Aβ42 levels are the first markers to become abnormal in AD pathogenesis, although these

biomarkers are not approved for prediction of disease progression or therapeutic monitoring.

The earliest methods of detecting Aβ plaques post mortem used coloured dyes–Congo

red and thioflavin T–that bind to the β-sheet structure of Aβ (Glenner 1980). Thioflavin T

was used as the basis for the development of the first radiolabelled molecules for use in

PET. To date, several molecules have been studied in humans (Kung 2012): 11C-Pittsburgh

compound B, 18F-florbetapir, 18F-florbetaben, 18F-flutemetamol, and NAV4694. (Table 1)
18F-florbetapir, 18F-florbetaben, and 18F-flutemetamol have been approved in Europe and
Table 1 Overview Aß tracers

Tracer name Chemical structure Features

Benzothiazole derivatives

[11C]-PiB (Klunk et al.
2004)

• Investigational

[18F]-flutemetamol
(VizamylTM)
(GE Healthcare 2014)

• Approved for clinical use

• Injected dose: 185 MBq

• Effective dose: 5.9 mSv (32 μSv/MBq)

• Imaging window:
90-110 min p.i.

• Scan duration: 20 min

• Visual assessment: color

Benzofuran derivative

[18F]-NAV4694
(formerly AZD4694)
(Cselényi et al. 2012)

• Investigational

Stilbene derivatives

[18F]-florbetaben
(NeuraCeqTM)
(Piramal Imaging 2014)

• Approved for clinical use

• Injected dose: 300 MBq

• Effective dose: 5.8 mSv (19 μSv/MBq)

• Imaging window:
90-110 min p.i.

• Scan duration: 20 min

• Visual assessment: grey scale

[18F]-florbetapir
(AmyvidTM)
(Eli Lilly 2013)

• Approved for clinical use

• Injected dose: 370 MBq

• Effective dose: 7.0 mSv (19 μSv/MBq)

• Imaging window: 30-50 min p.i.

• Scan duration: 10 min

• Visual assessment: grey scale
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US for clinical use in PET evaluation of Aβ neuritic plaque density in the brains of adults

who are being evaluated for AD and other causes of cognitive impairment. While these

agents are becoming increasingly established in routine clinical practice, there are import-

ant learnings from their clinical development and considerations that should be taken into

account for future research and development of protein deposition tracers. Some of the

peculiarities are described briefly in the following paragraphs.

The three approved agents have a planar chemical structure that is suitable for binding to

β-sheets in Aβ plaques. All approved agents follow the same mechanism of binding, but their

different chemical structures lead to differences with regard to dosing and dosimetry;

pharmacokinetics, including partitioning into grey and white matter structures; and interpret-

ation of visual reads (Eli Lilly 2013; Piramal Imaging 2014; GE Healthcare 2014). For example,
18F-florbetapir and 18F-florbetaben PET images are approved for evaluation in greyscale,

while 18F-flutemetamol PET images are read using a colour scale when used in the clinical

setting. Thus each tracer requires a unique medical education programme to ensure reliable

assessment of scans and to distinguish uptake in white matter from cortical grey matter.

Regulatory approval for Aβ PET scan assessment is currently based solely on a binary

visual read-out, and all three reading methods have been validated against histopathology

(Clark et al. 2012; Curtis et al. 2015; Sabri et al. 2015a). Of note, imaging agents used in

oncology such as 18F-FDG or 18F-FLT become trapped in tumours leading to a stable or

even increasing signal over time (Shields et al. 1998). In Aβ imaging, however, the tracer

instead shows decreasing signal or standardised uptake values (SUVs) over time, as a re-

sult of washout after binding to Aß plaque-affected cortical areas. In addition, quantifica-

tion of Aβ-PET scans typically involves calculating the SUV ratio, where the reference

region is a region with a ligand uptake and washout pattern similar to Aß-plaque-affected

cortical areas regardless of whether Aβ plaques are present (Schmidt et al. 2015). A num-

ber of different reference regions have been proposed (Landau et al. 2015), but further

discussion is outside the scope of this review. Quantification of PET scans has the ability

to better detect longitudinal changes during therapeutic intervention and has the potential

for automated analysis via software with more detailed regional analysis. Future uses of

Aβ-PET quantification, though not approved for routine clinical use, may include

improved assessment in uncertain clinical cases, drug trial enrichment by patient selec-

tion, pre-symptomatic staging of disease, and therapeutic monitoring. Such uses require

robust longitudinal assessment, reliable reference-region validation, and standardisation.

Beyond AD, amyloid-PET provides a unique opportunity for in vivo research of other

conditions that are present with Aβ deposition. For example, Aβ-PET may also detect

other plaque types and states of amyloid (e.g. diffuse plaques) (Sabri et al. 2015b), and

thus may provide additional insights into the disease and its pathogenesis. Other

conditions with Aβ-plaque depositions are reported, such as Lewy body diseases,

cerebral amyloid angiopathy, brain trauma, and Down syndrome. As specific as the

current tracers are for Aβ over other misfolded protein aggregates, somewhat surpris-

ingly they do bind other amyloids outside the brain. 18F-Florbetaben and 18F-florbetapir

have been reported to bind amyloid deposits in cardiac amyloidosis (Dorbala et al.

2014; Catafau & Bullich 2015; Mollee et al. 2015), and these tracers are also hypothe-

sized to bind other peripheral amyloid deposits. In addition, tracers may also have value

as a myelin biomarker in conditions such as multiple sclerosis (Matías-Guiu et al.

2015), by virtue of their white-matter signal.
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Protein deposition tracers under development

Detection of tau protein

Tau protein is the name given to soluble microtubule-associated protein (MAP),

which is essential for regulating intracellular transport (Spillantini & Goedert 2013).

Six different isoforms of tau exist, which can be distinguished by their number of

binding domains (either three or four), and different forms are accumulated in different

diseases (Delacourte 1999; Braak & Braak 1998). Furthermore, hyperphosphorylation and

other post-translational modifications can have an impact on tau conformation, leading

to, for example, aggregation in filamentous structures.

Tau protein aggregation leads to neuronal cell dysfunction and death, and studies

show a strong association between tau deposits, decreased cognitive function, and

neurodegenerative changes in AD. While the evolution of AD neuropathology de-

pends on interactions between Aβ and tau (Jucker & Walker 2011), the relative

contributions of the two proteins in the development of AD remain unclear. There

is emerging evidence from studying hereditary Alzheimer’s Disease (e.g. DIAN

study) that continues to point to a primary role of Aß in AD. Significant propor-

tions of the observed variance in age at symptom onset can be explained by family

history and mutation type (Ryman et al. 2014). Nevertheless, several other ques-

tions remain including the presence of Aβ deposition in cognitively normal individ-

uals and time to development of first symptoms or the weak correlation between

plaque load and cognition (Morris et al. 2014). Expanding the view of the AD

pathogenesis beyond Aβ and tau pathology and considering aspects such as life-

style, cognitive reserve may provide answers in the future. Imaging Aß and tau al-

lows investigators to look at the impact on cognition and follow subjects from an

earlier stage. In addition to AD several neurodegenerative diseases – including

chronic traumatic encephalopathy, progressive supranuclear palsy, corticobasal de-

generation, and some variants of frontotemporal lobar degeneration – have been

described in which tau aggregate deposition is a dominant pathology (Mohorko &

Bresjanac 2008; Lee et al. 2001; McKee et al. 2009).

Tau is a more complex target than Aβ in that the monomer protein is much

larger than Aβ, is represented in different isoforms in different diseases, is

present in lower amounts and has a distinct anatomic spread throughout the

brain as the different diseases progress. These characteristics, and the intracellu-

lar localisation, make the requirements for a tau PET tracer more challenging

(Villemagne et al. 2015).

Several tau imaging compounds have been described in preclinical and clinical

studies. To date, however, none have been approved. The first 18F tracer with tau

binding was 18F-FDDNP, although the compound suffered from a lack of selectiv-

ity (Kepe et al. 2013). Regional uptake patterns in the brain were therefore re-

quired to differentiate Aβ and tau. Meanwhile, more-selective tracers have become

available. 11C-PBB3, allows tau imaging in AD and non-AD tauopathies such as

corticobasal syndrome. However, the 11C label is not preferred, as it limits wide-

spread use due to its short half-life (20 min) (Shimada et al. 2015). Studies with

the 18F-labelled tracers THK-523 and THK-5117 showed that these compounds do

not correlate with Aβ distribution, but instead follow the known distribution of

tau (Harada et al. 2013). However, high retention in white matter limits their use
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in the clinical setting. An improved compound from the series, 18F-THK-5351,

provided information on tau neurofibrillary tangle pathology in living individuals

in initial studies (Harada et al. 2015). The usefulness for detection of tau path-

ology in pure tauopathies, however, needs to be demonstrated clinically. The

Siemens (now Avid) compound 18F-T808 showed good preclinical properties as

well as good pharmacokinetic characteristics in a first-in-human study, although

development was hampered by strong defluorination (Chien et al. 2014). Another

derivative, 18F-T807 (now AV1451), showed slower kinetics but good imaging data

in AD as well as in some other tauopathies. Off-target activity in the striatum and

choroid plexus is, however, described for this compound (Chien et al. 2013). In

comparison with other compounds, 18F-T807 has been evaluated in the most sub-

jects. Recently presented data on three Roche tau tracers in humans showed that
18F-RO6958948 has a promising clinical profile, with good brain uptake and little

retention in cognitively normal young individuals (Wong et al. 2015). The agent

also has a distribution broadly consistent with published post-mortem data,

including low, homogenous uptake in controls, higher, heterogeneous uptake in

AD, and a different binding pattern when compared with Aβ tracers. Notably

there was no apparent brain penetration of radiolabelled metabolites and no

defluorination. A clinical study is ongoing to collect test-retest and whole-body

dosimetry data. Furthermore, first-in-human data of the Genentech tau tracer

(18F-GTP1) were recently presented, indicating a promising clinical profile

(Sanabria Bohorquez et al. 2015). Finally, 18F-PI-2014 was tested recently in

humans and has shown uptake in tau-target regions consistent with tau binding

(Piramal Imaging, data on file). Very recently, preclinical data from 18F-MK-6240

were published (Walji et al. 2016). This 18F-labeled agent combines good in vitro

characteristics for NFT binding and clean off-target profile with suitable physico-

chemical properties and pharmacokinetics in rhesus monkeys. A clinical study is

underway and results should be expected soon. A summary of tau tracer charac-

teristics and key features of those with published structural information is pre-

sented in Table 2.

Future development of tau tracers will require further evaluation of existing

radiotracers, including preclinical characterisation, validation in the clinic, better

understanding of uptake patterns in healthy controls, test-retest and human dosim-

etry data, and neuropathological correlations with PET, as well as head-to-head

comparisons between different tracers. Improvement seems possible in the pharma-

cokinetic properties of 18F-labeled tracers, binding selectivity, and experience in

non-AD tauopathies.

Overall, the combination of Aβ and tau-PET is currently significantly improving

the knowledge of the interactions between the two proteins in humans. In addition,

tau-PET–in its unique role as a marker of neurodegeneration–may allow the

in vivo study of tau pathology evolution and topographic distribution across dis-

eases. Tau imaging could also allow early, more accurate diagnosis, and more im-

portantly monitoring of disease progression, in other tauopathies, cognitive

impairment, movement disorders, and head trauma. Tau-PET may also lead to

more efficient development of disease-modifying drugs not only for compounds

targeting the tau protein itself.



Table 2 Characteristics of published tau protein tracers updated from (Villemagne et al. 2015)

Tracer name Chemical structure Features

Pyridinyl-butadienyl-benzothiazole derivative

[11C]-PBB3 (Maruyama et al. 2013;
Hashimoto et al. 2014)

• Selectively binds to tau

• Retention of 11C-PBB3 in
the venous sinuses

• Retention of tracer in basal
ganglia in patient with
corticobasal degeneration
suggests that it might bind
to non-AD tauopathies

Dialkylamino-naphthylethylidene derivative

[18F] FDDNP (Kepe et al. 2013;
Thompson et al. 2009; Small
et al. 2013; Shoghi-Jadid et al.
2002; Smid et al. 2013)

• First 18F-tracer with tau
binding

• Lack of selectivity for tau;
nanomolar binding affinity
to Aβ

• Very limited dynamic range

• Regional brain retention used
for differentiating Aβ and tau

Benzimidazole derivatives

[11C]-N-Methyl-Lansoprazole
(Shao et al. 2012; Fawaz et al. 2014)

• In vitro binding to paired
helical filament-tau
demonstrated

• No brain uptake in mice
(P-glycoprotein substrate)

• Brain uptake in non-human
primates

• No human studies reported[18F]-N-Methyl-Lansoprazole
(Fawaz et al. 2014)

Quinoline derivatives

[18F]-THK-523 (Harada et al. 2013) • Slow kinetics

• Non-specific binding
(white matter, brain stem)

• No detection of non-AD
tauopathies (Pick’s disease;
three-repeat tauopathy)

[18F]-THK-5105 (Okamura et al.
2013; Okamura et al. 2014)

• Faster kinetics and higher
contrast than 18F-THK-523

• Non-specific binding
(white matter, brain stem)

[18F]-THK-5117 (Okamura et al.
2013; Okamura et al. 2015)

[18F]-THK-5351 (Harada et al. 2015)

• Faster kinetics and higher
contrast than THK-523

• Lower white matter retention

• Higher signal-to-noise ratio
compared with 18F-THK-
5105 and 18F-THK-5117

Jovalekic et al. EJNMMI Radiopharmacy and Chemistry  (2016) 1:11 Page 7 of 12



Table 2 Characteristics of published tau protein tracers updated from (Villemagne et al. 2015)
(Continued)

6,5,6 Tricyclic pyrimidines and indoles

[18F]-T807 (Chien et al. 2013;
Xia et al. 2013)

• Tracer with broadest
clinical data package

• Cortical retention consistent
with the known distribution
of tau in AD brain

• Strong correlation with
disease severity

• Slower kinetics than 18F-T808

• Off-target activity (striatum,
choroid plexus)

[18F]-T808 (Chien et al. 2014) • Faster kinetics than 18F-T807

• Substantial defluorination

Pyrrolo-pyridine-isoquinolineamine

[18F]-MK-6240 (Walji et al. 2016) • Good in vitro binding
affinity to NFTs, high
selectivity to β-amyloid, and
excellent physicochemical
properties for brain
penetration and cellular
permeability.

• No off-target binding
and suitable in vivo
pharmacokinetics

• Clinical studies are
currently underway

AD alzheimer’s disease
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Detection of α-synuclein

Investigation of α-synuclein and TDP-43 in post-mortem human brains has led to

increased understanding of the evolution of neuropathology in PD and amyotrophic

lateral sclerosis, in which lesions are believed to spread from an initial ‘seed’ of

misfolded protein (Jucker & Walker 2013). There is therefore a clinical need for

imaging modalities for detection of α-synuclein, which has a potential role in the differ-

ential diagnosis of PD, dementia with Lewy bodies, progressive supranuclear palsy, and

multiple system atrophy. Genetic biomarkers in these conditions, while critically

important in the case of inherited disease, are not salient in the majority of cases

(>90 %) with sporadic PD. Detection methods for α-synuclein in CSF are currently

under development, although it is not clear how CSF levels relate to histopathology

data (Mollenhauer 2014) and still need further validation.

Another role for α-synuclein imaging is to decrease risk and increase efficiency in

drug discovery. Imaging could identify patients early enough for potential therapies,

assist with therapeutic monitoring, and enhance trial recruitment and patient enrich-

ment. α-synuclein has advantages over dopamine as a biomarker for PD, as changes in

α-synuclein may occur earlier than dopamine changes, and are not up-or down-

regulated by symptomatic treatment. Efforts to develop PET or single-photon emission

computed tomography tracers for α-synuclein are ongoing but are still in their infancy.
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The compounds currently investigated for imaging α-synuclein depositions are shown

in Table 3. Research groups started with the investigation of the 18F-labeled compound

BF-227 that was reported to bind to both synthetic α-synuclein aggregates as well as

β-amyloid fibrils in vitro (Fodero-Tavoletti et al. 2009). It was demonstrated that BF-
Table 3 Characteristics of published a-synuclein deposition tracers

Tracer name Chemical structure Features

Aminothiazolyl-ethenyl-benzoxazole derivatives

[11C] BF-227 (Kikuchi et al. 2010) • Non-selective, affinities: see
below for 18F-derivative

• Investigated in MSA patients

[18F] BF-227: (Fodero-Tavoletti
et al. 2009)

• Aß1-42 fibrils: KD1 = 1.3 nM

• α-syn fibrils: KD = 9.6 nM

Phenothiazine derivatives

SIL23 (Bagchi et al. 2013) • Affinity and selectivity not
optimal for in vivo imaging

• Affinity α-synuclein: Ki = 58 nM

• Screening tool

[18F] 2b (Zhang et al. 2014) • Affinity α-synuclein: Ki = 49 nM

• Selectivity α -syn vs. Aß: 2-fold

• Selectivity α -syn vs. tau: 2.5-fold

• Crosses blood–brain-barrier in
healthy cynomolgus macaques

• Shows sufficient initial uptake
and wash-out

• Higher selectivity desired

[11C] 2a (Zhang et al. 2014) • Affinity α-synuclein: Ki = 32 nM

• Selectivity α-syn vs. Aß: 3-fold

• Selectivity α-syn vs. tau: 4-fold

• Crosses blood–brain-barrier in
cynomolgus macaques

• Shows sufficient initial uptake
and wash-out

• Higher selectivity desired

3-(Benzylidene) indolin-2-one derivatives

[18F] 46a: (Chu et al. 2015) • Selective for α-synuclein:

o α-syn Kd = 8.9 nM

o Aß Kd = 271 nM

o Tau fibrils: 50 nM

• High logP and presence of nitro
group may limit its use for in
vivo PET studies

• Potential as secondary lead
compound for further SAR studies
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227 could stain α-synuclein-containing glial cytoplasmic inclusions in post-mortem

tissues. Moreover, a PET study with 11C-labelled BF-227 showed its ability to detect

α-synuclein deposits in the living brains of patients with multiple system atrophy

(Kikuchi et al. 2010). However, the high affinity of this radiotracer for β-amyloid

plaques limit its use in humans for differential diagnosis.

A series of phenothiazine derivatives was described for α-synuclein-binding (Yu et al.

2012) and the radioiodinated compound SIL23 was developed (Bagchi et al. 2013). As

stated by its developers, the affinity of SIL23 for α-synuclein and its selectivity for

α-synuclein versus Aβ and tau fibrils is not optimal for imaging fibrillar α-synuclein

in vivo, but it could be used to screen additional ligands for suitable affinity and

selectivity. Following this approach, additional compounds such as [11C] 2a and

[18F] 2b have been identified that are more specific for α-synuclein and have shown

the ability to cross the blood–brain barrier in animal studies (Zhang et al. 2014).

However, these have not yet translated to human imaging. More recently, the same

group reported the development and in vitro characterization of (benzylidene)

indolin-2-one derivatives as new ligands for α-synuclein fibrils covering also PET

ligands like [18F] 46a with high affinity and selectivity for α-synuclein (Chu et al.

2015). Future research will show whether some of these compounds have the ability

to image α-synuclein depositions in patients.
Conclusions
Several PET tracers for detection of pathological protein depositions or aggregates are

now available for routine clinical use. In particular, PET agents binding to Aβ plaques

are approved as an adjunct to other diagnostic evaluations to estimate the plaque dens-

ity in patients with cognitive impairment who are being evaluated for AD or other

causes of cognitive decline. Tau-PET tracers are currently in clinical development, and

α-synuclein protein deposition tracers are at early stage of research. Importantly, PET

tracer development and imaging of protein aggregates require different approaches to

those involved in imaging of receptors or transporters, including lead optimisation,

scan analyses and quantitation. These tracers have, and will continue to, change our

understanding of complex disease processes.
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