Skip to main content

Table 1 Examples of pretargeting methods and applications

From: Pretargeting for imaging and therapy in oncological nuclear medicine

Pretargeting agent

Target antigen

Chase

Radioactivity vector

Pretargeted radionuclides

Results

References

Murine antibody or ScFv-streptavidin conjugate

Ep-CAM

biotinylated galactosyl-human serum albumin

DOTA-biotin

Yttrium-90

Clinical radioimmunotherapy of lung cancer and lymphoma

(Hnatowich et al. 1987; Houghton et al. 2017)

Pros: targeting efficacy, high tumour/non-tumour ratio

Cons: complexity (3 compounds), presence of endogenous biotin, toxicity (lung cancer), immunogenicity of streptavidin

Murine biotinylated antibody

CEA, tenascin

Avidin + streptavidin

DOTA-Biotin

Yttrium-90

Clinical radioimmunotherapy of brain tumours

(Heskamp et al. 2017)

Pros: targeting efficacy, high tumour/non-tumour ratio

Cons: complexity (4 compounds), immunogenicity of avidin/streptavidin

Murine and chimeric bispecific antibody

CEA

None

Indium-EDTA haptens

Indium-111

Clinical immunoscintigraphy

(Goldenberg 1997)

Pros: high tumour/non-tumour ratio, tumour imaging in the liver

Cons: low tumour uptake, moderate sensitivity

Murine and chimeric bispecific antibody (chemically conjugated Fab)

CEA

None

Bivalent haptens

Indium-111

Clinical immunoscintigraphy, radioimmunotherapy

(Le Doussal et al. 1993; Lütje et al. 2015; McBride et al. 2009; Paganelli et al. 2001)

Iodine-131

Pros: targeting efficacy, high tumour/non-tumour ratio, evidence of therapeutic effect in the clinic

Cons: difficulties in the production of bispecific antibodies

Humanized bispecific antibody (Dock and Lock)

CEA, CD20, Trop2

None

Bivalent haptens

Gallium-68

Clinical immunoscintigraphy, radioimmunotherapy and immuno-PET, preclinical alpha-radioimmunotherapy

(Schoffelen et al. 2010; Schoffelen et al. 2013; Schoffelen et al. 2014; Sharkey et al. 2003; Sharkey et al. 2005)

Lutetium-177

Pros: high tumour/non-tumour contrast ratio in PET imaging

Bismuth-213

Cons: Insufficient tumour irradiation for lutetium-177 therapy

Murine antibody-oligonucleotide conjugate

Carcinoembryonic antigen

None

Complementary Morpholino oligonucleotide

Technetium-99 m

Preclinical targeting studies

(Halpern & Dillman 1987)

Pros: good tumour/non-tumour contrast ratio

Cons: preparation of antibody-oligonucleotide conjugates

Affibody-oligonucleotide conjugate

HER2

None

DOTA-peptide nucleic acid

Indium-111

Preclinical targeting and imaging studies

(Yao et al. 2004)

Pros: very good tumour/non-tumour contrast ratio

Cons: preparation of antibody-oligonucleotide conjugates

Humanized antibody-trans-cyclo-octene conjugate

TAG72, GPA33, CA19.9

None or tetrazine-conjugated albumin attached to galactose or polystyrene beads

DOTA-PEG7-tetrazine

Indium-111, copper-64, lutetium-177, zirconium-89

Preclinical targeting; immunoscintigraphy, PET imaging and dosimetry studies

(van Duijnhoven et al. 2015; van Essen et al. 2014; van Schaijk et al. 2005)

Pros: good tumour uptake and tumour/non-tumour contrast ratios, easy preparation of the reagents

Cons: need for a chase step to achieve excellent results

Diabody- or Affibody-trans-cyclo-octene conjugate

TAG72, HER2

None

DOTA-PEG10-tetrazine

Lutetium-177

Preclinical targeting and imaging studies

(Vugts et al. 2013; Yao et al. 1995)

Pros: good tumour uptake and tumour/non-tumour contrast ratios, easy preparation of the reagents, no need for a chase step

Cons: possible problem of kidney uptake for therapy