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Abstract

Background: Actinium-225 (225Ac, t1/2 = 9.9 d) is a promising candidate
radionuclide for use in targeted alpha therapy (TAT), though the currently
limited global supply has hindered the development of a suitable Ac-chelating
ligand and 225Ac-radiopharmaceuticals towards the clinic. We at TRIUMF have
leveraged our Isotope Separation On-Line (ISOL) facility to produce 225Ac and
use the resulting radioactivity to screen a number of potential 225Ac-
radiopharmaceutical compounds.

Results: MBq quantities of 225Ac and parent radium-225 (225Ra, t1/2 = 14.8 d)
were produced and separated using solid phase extraction DGA resin, resulting
in a radiochemically pure 225Ac product in > 98% yield and in an amenable
form for radiolabeling of ligands and bioconjugates. Of the many polydentate
picolinic acid (“pa”) containing ligands evaluated (H4octapa [N4O4], H4CHXoctapa
[N4O4], p-NO2-Bn-H4neunpa [N5O4], and H6phospa [N4O4]), all out-performed the
current gold standard, DOTA for 225Ac radiolabeling ability at ambient
temperature. Moreover, a melanocortin 1 receptor-targeting peptide conjugate,
DOTA-modified cyclized α-melanocyte-stimulating hormone (DOTA-CycMSH), was
radiolabeled with 225Ac and proof-of-principle biodistribution studies using
B16F10 tumour-bearing mice were conducted. At 2 h post-injection, tumour-to-
blood ratios of 20.4 ± 3.4 and 4.8 ± 2.4 were obtained for the non-blocking
(molar activity [M.A.] > 200 kBq/nmol) and blocking (M.A. = 1.6 kBq/nmol)
experiment, respectively.

Conclusion: TRIUMF’s ISOL facility is able to provide 225Ac suitable for preclinical
screening of radiopharmaceutical compounds; [225Ac(octapa)]−, [225Ac(CHXoctapa)]−,
and [225Ac(DOTA-CycMSH)] may be good candidates for further targeted alpha therapy
studies.
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Background
Due to recent clinical results demonstrating the exceptional ability of 225Ac-radiophar-

maceuticals for the treatment of late stage castration resistant prostate cancer

(Sathekge et al. 2018; Kratochwil et al. 2016; Kratochwil et al. 2018), considerable ef-

forts within the field of nuclear medicine have been directed towards development of

new radiopharmaceuticals for targeted alpha therapy (TAT) containing 225Ac or other

suitable alpha-emitting radionuclides (Poty et al. 2018a; Poty et al. 2018b; Seidl 2014;

Kim and Brechbiel 2012; 11th International Symposium on Targeted Alpha Therapy

(TAT11), 2019; Elgqvist et al. 2014; Morgenstern et al. 2018; Baidoo et al. 2013). Des-

pite these promising preliminary findings, the progression of 225Ac drugs towards the

clinic has been obstructed by the limited radionuclide supply and the limited investiga-

tion of radiochemical protocols for chelating 225AcIII under mild conditions. Currently,

the total global supply of 225Ac is approximately 63 GBq (1.7 Ci) per year, slowing clin-

ical trials and resulting in high costs that make 225Ac inaccessible to many researchers.

The reader is referred to the following reviews for a more detailed overview of 225Ac

supply (Robertson et al. 2018; Engle 2018).

Moreover, the absence of a stable surrogate isotope makes the study of actinium chem-

istry particularly challenging, and only very recently have insights into the fundamental

chemical properties and coordination preferences of the actinide appeared in the litera-

ture (Ferrier et al. 2017; Ferrier et al. 2016). The tetraaza macrocycle DOTA (1,4,7,10-tet-

raazacyclododecane-1,4,7,10-tetraacetic acid, N4O4), is currently the “gold standard” in
225Ac chelation, despite the chelating ligand’s sub-optimal properties for encapsulating

this large actinide. DOTA forms kinetically inert complexes with 225Ac, albeit at a cost of

slow radiolabeling kinetics which requires heating to elevated temperatures and extended

reaction times (Ramogida and Orvig 2013; Price and Orvig 2014). The requirement to

heat the current gold standard DOTA, above physiological temperatures for extended pe-

riods to facilitate incorporation of the 225AcIII ion is adequate yet not ideal for small mol-

ecule or peptide bioconjugates that can withstand such temperatures but results in

denaturing of sensitive biomolecules such as antibodies (Maguire et al. 2014; McDevitt et

al. 2002). Consequently, two-step radiolabeling methods are often required for antibody

radiolabeling. For example, the DOTA-isothiocyanate (DOTA-NCS) bifunctional chelate

can be radiolabeled with 225Ac at elevated temperatures first, followed by conjugation to

the antibody at mild temperature, unfortunately the hydrolysis of the isothiocyanate in

the first step results in low radiochemical yields (8–11%) (McDevitt et al. 2002). Recently,

Poty et al. have demonstrated that a DOTA-tetrazine bifunctional chelate can be radiola-

beled in a two-step method to a transcyclooctene-modified antibody by exploiting the

facile inverse electron-demand Diels-Alder reaction yielding bioconjugates with molar ac-

tivities that are satisfying for TAT (Poty et al. 2018c). Nonetheless, a chelating ligand with

the ability to quantitatively incorporate the 225AcIII ion under conditions commensurate

for radiopharmaceutical use (such as sub-micromolar ligand concentrations, mild ambient

reaction temperatures, and fast reaction times), that also forms thermodynamically stable

and kinetically inert complexes would be of high interest and utility in the field of 225Ac

TAT. Furthermore, access to myriad chelate options will allow greater flexibility during

future discovery work of 225Ac radiopharmaceuticals, since the radiometal-complex can

be used to influence the pharmacokinetics of the overall construct, particularly for small

molecule or peptide-based radiopharmaceuticals. In an effort to produce a viable
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alternative, an octadentate bispidine, H2bispa
2 (Comba et al. 2017), and an 18-membered

macrocycle, macropa (Thiele et al. 2017), have been reported that show improved proper-

ties for 225Ac radiolabeling, and to date are the only chelators that permit rapid, ambient

temperature chelation (Deal et al. 1999; Chappell et al. 2000).

The aims, herein, were to (1) determine the feasibility of producing 225Ac via Isotope

Separation On-Line (ISOL) at TRIUMF and (2) test the suitability of ISOL-derived 225Ac

(in terms of its (radio) chemical properties and amount of radioisotope produced) to drive

radiolabeling studies and preclinical radiopharmaceutical development. Within the second

aim, we sought to answer two questions: (2a) can the ISOL-derived 225Ac be used to

evaluate chelating ligands for Ac coordination; and (2b) is the 225Ac-ISOL product pro-

duced in sufficient amounts to drive preclinical radiopharmaceutical development? In

terms of radiopharmaceutical development, a DOTA-bioconjugate was chosen since

DOTA is currently the industry standard in 225Ac TAT.

ISOL facilities have been used to produce medical radionuclides that are otherwise chal-

lenging to obtain (Dilling et al. 2014; dos Santos Augusto et al. 2014; Crawford et al. 2017a;

Crawford et al. 2017b; Crawford et al. 2018). Herein we report for the first time the ISOL-

production of 225Ac, at ISAC, TRIUMF’s ISOL facility. The 225Ac isolated from these

experiments was used in radiolabeling studies with a class of picolinic acid (“pa”) ligands

developed in our laboratories (Price et al. 2014; Ramogida et al. 2015; Price et al. 2012;

Spreckelmeyer et al. 2017) (Fig. 1) and compared to DOTA as well as macropa and

Fig. 1 Ligand structures discussed in this work: macrocyclic commercial standard DOTA, previously reported
ligands macropa and H2bispa

2, acyclic picolinic acid “pa” ligands p-NO2-Bn-H4neunpa, H6phospa,
H4CHXoctapa, and H4octapa, and DOTA-CycMSH bioconjugate (CCZ01048)
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H2bispa
2 (Comba et al. 2017; Thiele et al. 2017). The “pa” chelating ligand family has dem-

onstrated versatility for coordinating a number of imaging (e.g., gallium-67/68, indium-111,

copper-64) and therapeutic isotopes (e.g., copper-64, lutetium-177, yttrium-90), making

them extremely amenable for incorporation into a “theranostic” radiopharmaceutical. The

octadentate and nonadentate “pa” ligands H6phospa (N4O4) (Price et al. 2014), p-NO2-Bn-

H4neunpa (N5O4) (Spreckelmeyer et al. 2017), H4octapa (N4O4) (Price et al. 2012; Price et

al. 2013), and H4CHXoctapa (N4O4) (Ramogida et al. 2015) used in these radiolabeling ex-

periments, were chosen because they were designed to incorporate larger metal ions such

as actinium. AcIII has a documented ionic radius of 112 ppm (coordination number, CN 6)

(Shannon 1976) and is likely suited to large polydentate chelators of high denticities. In

addition, two DOTA-peptide conjugates, DOTA-D-Phe1-Tyr3-octreotide (DOTA-TOC)

(Graf et al. 2014; Eppard et al. 2017) and DOTA-Cyclized α-melanocyte-stimulating hor-

mone (DOTA-CycMSH, Fig. 1) (Zhang et al. 2017) was radiolabeled with our ISAC derived
225Ac. Finally, a pilot in vivo study with the 225Ac-DOTA-CycMSH conjugate on tumour-

bearing mice was performed to establish the feasibility of using ISOL-derived 225Ac to drive

preclinical radiopharmaceutical development. Malignant melanoma is the most lethal form

of skin cancer, accounting for 75% of deaths from this type of cancer. Receptor-targeted ra-

diopharmaceuticals for melanoma imaging and therapy are promising strategies for diagno-

sis and treatment. In particular, the melanocortin-1 receptor (MC1R) is highly expressed in

83% of malignant melanoma cell lines, and has low expression in normal tissues making it

an attractive target for radionuclide therapy and imaging (Zhang et al. 2017; Raposinho et

al. 2010). Analogues of the tridecapeptide α-melanocyte-stimulating hormone (αMSH) have

been studied extensively for MC1R-targeted imaging and less so for therapy. The most

stable and successful analogues to date are based on lactam-bridged cyclized α-MSH (Ac-

Nle4-cyclo [Asp5-His-D- Phe7-Arg-Trp-Lys10]-NH2, or Nle-CycMSHhex). Most recently our

lab has developed a DOTA-CycMSH conjugate incorporating a cationic piperidine linker

for positron emission tomography (PET) imaging with the positron-emitter gallium-68

(68Ga, t1/2 = 68min) that exhibited promising ability to localize and internalize in melanoma

cells, referred to herein as DOTA-CycMSH or CCZ01048 (Fig. 1). The [68Ga]Ga-CCZ01048

tracer exhibited high binding affinity to MC1R with sub-nanomolar Ki values, rapid intern-

alization into B16F10 melanoma cells, high in vivo stability in blood plasma, and exceptional

PET image contrast in vivo with tumour-to-blood, tumour-to-muscle, tumour-to-bone and

tumour-to-kidney ratios of 96.4 ± 13.9, 210.9 ± 20.9, 39.6 ± 11.9 and 4.0 ± 0.9, respectively, at

2 h post-injection (Zhang et al. 2017). Given this 68Ga-tracer’s receptor binding affinity,

rapid internalization, and low background organ uptake, we hypothesized that CCZ01048

would be a promising candidate for targeted alpha therapy with 225Ac, and biodistribution

studies were therefore conducted to evaluate the ability of CCZ01048 to deliver 225Ac to

B16F10 tumours in vivo.

Materials and methods
All solvents and reagents were purchased from commercial suppliers (Fisher Scientific,

Sigma Aldrich) and used as received. Ultrapure HCl (TraceSELECT®) and NaOH

(99.99% trace metal grade) was purchased from Sigma Aldrich; nitric acid (TraceMetal™

Grade) was purchased from Fisher Scientific. Branched DGA resin (N,N,N′,N′-tetrakis-

2-ethylhexyldiglycolamide, 50–100 μm particle size) was purchase from Eichrom

Technologies (Lisle, IL, USA). Picolinate-based ligands H4octapa, H4CHXoctapa,
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H6phospa, and p-NO2-Bn-H4neunpa were prepared as previously described (Price et al.

2014; Ramogida et al. 2015; Price et al. 2012), as were H2bispa
2 and macropa (Comba

et al. 2017; Thiele et al. 2017). DOTA and human serum were purchased from Sigma

Aldrich (St. Louis, MO). Pharmaceutical grade DOTATOC was purchased from ABX,

DOTA-CycMSH was prepared as previously described (Zhang et al. 2017). Deionized

water (> 18MΩ cm) was prepared on site using a Millipore Direct-Q® 3UV water purifi-

cation system.

All radioactivity measurements were performed using gamma ray spectroscopy on an N-

type co-axial high purity germanium (HPGe) gamma spectrometer (Canberra Industries)

calibrated with a 20mL 152Eu and 133Ba source. After thorough mixing, aliquots (5–100 μL)

from a sample were removed and diluted to the 20mL standard volume for measurement.

Samples were counted at a distance at least 15 cm from the detector for at least 30min or

until peak areas were below 5%; dead time was kept below 5%. Spectra were analyzed using

the Genie 2000 software package (version X, Canberra Industries), using 40 keV, 218 keV,

and 440 keV gamma lines for 225Ra, 221Fr, and 213Bi, respectively. 225Ac was quantified either

directly via its 188 keV emission, or indirectly via 221Fr after waiting at least 30min to en-

sure equilibrium between 225Ac and 221Fr.

The High Performance Liquid Chromatography (HPLC) system used for analysis of
225Ac-bioconjugates consisted of an Agilent 1260 Infinity II Quaternary Pump, Agilent

1260 autosampler, Raytest Gabi Star NaI (Tl) radiation detector, Agilent 1260 variable

wavelength detector, and Agilent 1260 analytical scale fraction collector. Phenomenex

Luna 5 μm C18 100 Å liquid chromatography analytical (250 × 4.6 mm) and semi-

preparative (250 × 10 mm) columns were used for the quality assurance analysis and

purification of 225Ac-bioconjugates, respectively.

225Ac production and purification

Ion beams of 225Ra and 225Ac were created using the isotope separation on-line (ISOL) tech-

nique in operation at TRIUMF’s ISAC facility (Dilling et al. 2014). Detailed descriptions of

the collection of radioactivity from these beams is described elsewhere (Robertson et al.

2018; Crawford et al. 2017a; Crawford et al. 2017b; Crawford et al. 2018; Kunz et al. 2018).

Briefly, a uranium carbide target is bombarded with 9.8 μA of 480MeV protons, which cause

spallation, fission and fragmentation of the 238U target atoms. Simultaneous heating of the

target under vacuum results in the diffusion and effusion of volatile reaction products out of

the target into the transfer tube/ionizer region. The reaction products, among them 225Ra

and 225Ac, are ionized via surface or resonant laser ionization and extracted as a secondary

particle beam with an energy of 20–40 keV, which is subsequently mass separated and deliv-

ered to experiments – in our case an aluminum implantation target for isotope collection.

The resolving power of the ISAC mass separator is such that the delivered A= 225 beam

contains isotopes of Fr, Ra, and Ac. Fr, and to some degree Ac and Ra, ionize in the ISAC

surface ion source; however, higher ionization efficiencies can be obtained by means of elem-

ent selective resonant laser ionization. Efficient laser ionization schemes for Ac and Ra can

now be applied at ISAC simultaneously for co-implantation of Ac and Ra. After implantation,

the aluminum target containing the implanted radioactivity was removed from the beamline

and the 225Ra and 225Ac retrieved from the aluminum material by etching the surface of the

aluminum with 0.1M HCl (~ 0.5mL) as described previously (Kunz et al. 2018).
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The purification of 225Ac from 225Ra and other non-radioactive contaminants was

adapted from previously reported methods for isolation of 225Ac from solid thorium

targets (Zielinska et al. 2007; Apostolidis et al. 2005; Radchenko et al. 2015; Horwitz et

al. 2005). Briefly, the recovered 225Ra/225Ac solution (0.1M HCl, ~ 0.5 mL) was diluted

to 4M HNO3 (5 mL), and passed through a DGA column (35–40 mg of DGA branched

resin in a 6 mm diameter reservoir, pre-conditioned with H2O (2mL), 0.5 M HNO3 (2

mL), and 4M HNO3 (2 mL)) (Horwitz et al. 2005). Under these conditions, AcIII binds

to the DGA while Ra passes through. The loaded DGA column was then washed with

4M HNO3 (4 mL). After air drying the column, the 225Ac was eluted from the resin

using 0.05M HNO3 (0.5 mL). This separation scheme is illustrated in Fig. 2. The efflu-

ent (load fraction) containing 225RaII and the bulk of the non-radioactive AlIII impur-

ities was collected and retained to decay, allowing for additional grow-in of 225Ac from
225Ra. Approximately every 1–3 weeks, the purification procedure was repeated to iso-

late a new batch of 225Ac.

The chemical purity of the 225Ac product was assessed via inductively coupled plasma

optical emission spectrometry (ICP-OES) and inductively coupled plasma mass spec-

trometry (ICP-MS) to quantify the presence of any stable cations that may compete

with 225Ac in radiolabeling reactions. Samples of both the initial solution containing
225Ra and 225Ac (before separation via DGA) and the final purified 225Ac solution were

analyzed for elemental composition using an Agilent 7700× inductively-coupled plasma

mass-spectrometer (ICP-MS). All samples were prepared by drying on a hotplate,

treated with concentrated HNO3 and then again dried to convert all salts into the ni-

trate form. Samples were then diluted with a 1% HNO3, 0.05% HF solution containing

10 ppb Indium (internal standard). All acids used were sub-boiled to produce solutions

containing a very low level of trace elements. Standard solutions were prepared from

both mixed and single-element standards purchased from Inorganic Ventures

Fig. 2 225Ra/225Ac radiochemical separation method used for purification of ISOL-produced 225Ac. The
solution resulting from etching 225Ra and 225Ac from the aluminum target was diluted with nitric acid (to 4
M HNO3) and loaded onto a preconditioned DGA resin (Horwitz et al. 2005). After washing the resin (with
4 M HNO3) to remove residual 225RaII, the 225AcIII was eluted from the resin 0.5 mL of 0.05 M HNO3
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(Christiansburg, VA, USA). Elements assayed included: Be, Al, Ca, Sc, Ti, Cr, Mn, Fe,

Co, Ni, Cu, Zn, Ga, Sr, Y, Zr, Nb, Mo, Sn, W, and Pb.

225Ac radiolabeling studies and complex stability assays

The pro-ligands H4octapa, H4CHXoctapa, H6phospa, p-NO2-Bn-H4neunpa and stand-

ard DOTA were made up as stock solutions (10 mg/mL, ~ 10− 2 M) in deionized water.

A serial dilution was used to prepare ligand solutions at 10− 3, 10− 4, 10− 5, and 10− 6 M

in water. A 10 μL aliquot of each ligand solution (or water, as a radiolabeling negative

control) was diluted with ammonium acetate buffer (170 μL; 0.15M; pH 5, 6, or 7).
225Ac(NO3)3 (5–30 kBq, 10–20 μL) was added and mixed gently to begin the radiolabel-

ing reaction at ambient temperature (or 80 °C in the case of DOTA). Reaction pH (5.5

or 7) and temperatures (ambient or 40 °C) were applied and chosen because they are

favourable conditions amenable for radiolabeling antibodies. An exhaustive list of radi-

olabeling reactions tested – repeated in triplicate – can be found in Additional file 1:

Section S1.

With the exceptions of [225Ac(phospa)]3− and [225Ac(neunpa)]− complexes, for each

stock ligand concentration and reaction pH, the reaction progress and radiochemical

yield at varying time points (15–120min) was analyzed by spotting a portion (1–5 μL)

of the reaction mixture onto the bottom of an instant thin layer chromatography

(iTLC) plate or aluminum backed silica TLC plate. After waiting at least 6 h to ensure

equilibrium between 225Ac and its decay chain, plates were counted on a BioScan

System 200 imaging scanner equipped with a BioScan Autochanger 1000.

Varying TLC/iTLC plate systems were selected for different ligands based from re-

sults of positive and negative radiolabeling controls:

� Method A, for [225Ac(octapa)]− and [225Ac(CHXoctapa)]−: iTLC-SG plates (Agilent,

2 cm × 10 cm, baseline at 1.5 cm), developed using 10 mM NaOH/9% NaCl solution.

Under these conditions free 225AcIII remains at the baseline (Rf = 0), while the
225Ac-ligand complex migrates upwards with the solvent (Rf > 0); or

� Method B, for [225Ac(bispa2)]+ and [225Ac(macropa)]+: aluminum-backed ultrapure

silica gel 60 with 250 μm thickness TLC plates (Fisher, 2 cm × 10 cm, baseline at 1.5

cm), developed using 0.4 M sodium citrate (pH 4) with 10% methanol. Under these

conditions free 225AcIII migrates with the solvent front (Rf = 1), while 225Ac-ligand

complex remains at the baseline (Rf = 0); (Comba et al. 2017; Thiele et al. 2017) or

� Method C, for [225Ac(DOTA)]−: iTLC-SA plates (Agilent, 2 × 10 cm, baseline at 1.5

cm) and developed using 50 mM EDTA buffer, pH 4. Under these conditions free
225AcIII migrates with the solvent front (Rf = 1), while 225Ac-ligand complex remains

at the baseline (Rf = 0); or

� Method D, for human serum stability (below): aluminum-backed ultrapure silica gel

60 with 250 um thickness TLC plates (Fisher, 2 cm × 10 cm, baseline at 1.5 cm),

developed in 50 mM EDTA, pH 5. Under these conditions, chelate-bound 225Ac

remains at the baseline (Rf = 0), and any 225AcIII that has de-complexed from the

chelate will travel with the solvent front (Rf = 1). Method D was validated by

incubating “free” 225AcIII with human serum under analogous conditions to ensure

all the activity eluted with the solvent front (Rf ~ 1).
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Radiolabeling yields of [225Ac(phospa)]3− and [225Ac(p-NO2-Bn-neunpa)]
− were deter-

mined as follows: Briefly, to a 1 mL resin filled with Chelex (100–150 μg, sodium form,

50–100 mesh, equilibrated with NH4OAc [0.15M, pH 5.5]), the entire radiolabeling re-

action mixture was loaded (Full). The resin was eluted with NH4OAc (0.15M, pH 5.5,

2 mL) (Eluted) to collect the 225Ac-complex while “free” unbound 225AcIII remained on

the resin. The eluate was diluted to 20 mL with H2O in a scintillation vial and activity

quantified via HPGe gamma spectroscopy. The radiolabeling yield was calculated by

comparing the fraction of 225Ac collected in the eluate (Elute) with the amount in the

initial radiolabeling reaction (Full); i.e. % RCY = (Elute)/(Full)*100.

To investigate the stabilities of the 225Ac-complexes, a competition experiment was

performed in the presence of excess human serum and the displacement of radioactiv-

ity from the chelator to serum proteins was tracked over the course of seven days. En-

dogenous metal-binding proteins in serum such as apo-transferrin and metallothionein

can compete for and displace chelator-bound metal ions in vivo, preventing successful

delivery of the radionuclide to the desired target. The 225Ac-complexes were prepared

using the radiolabeling protocols described above and added to an equal volume (170–

180 μL) of human serum (stored at − 5 °C and thawed at ambient temperature). At

varying time points (0.5 h to 7 days), small aliquots (1–5 μL) were spotted on iTLC

plates using Methods B or D, described above. Representative TLC radio-

chromatograms of a serum competition assay with ligand and control are presented in

Additional file 1: Figures S2 and S3.

The stability of a radiometal-chelate complex is also often assessed by its ability to

withstand transchelation in the presence of excess stable isotopes of the radiometal.

Though this is an impossible experiment to perform with Ac since all Ac isotopes are

unstable, lanthanum(III) has a similar ionic radius (103–116 ppm, CN = 6–9) and

charge to actinium(III) and is often considered a chemical surrogate to AcIII. Using

non-radioactive metal ions such as LaIII as a competitor for ligand complexation is a

straightforward method to probe the kinetic off-rate of a pre-formed AcIII complex,

since many ligands that bind AcIII may also efficiently complex LaIII. Herein, 225Ac-

complexes were prepared using the radiolabeling protocols described above and com-

bined with La(NO3)3 (0.1 M, 50M equivalents compared to the ligand) and allowed to

react at ambient temperature. At varying time points (1 h – 7 d), aliquots of the compe-

tition reaction mixture (1–5 μL) were spotted on aluminum backed TLC plates and

developed using the TLC methods described above.

Bioconjugate labeling studies and pilot in vivo studies with 225Ac-DOTA-CycMSH

Preliminary radiolabeling studies with DOTATOC using ISOL-derived 225Ac was per-

formed. To prepare 225Ac-labeled DOTATOC, 225AcIII (37 kBq or 1.5MBq) was added

to a vial containing precursor (25 μg, in 25 μL deionized water) and ammonium acetate

buffer (1M, pH 7) to give a final ligand concentration between 19 and 9.8 × 10− 5 M

and heated at 85 °C for 40 min. Reaction progress and RCYs were determined using

iTLC method B (see 225Ac radiolabeling studies and complex stability assays section).

To further demonstrate the utility of ISAC-ISOL derived 225Ac and to explore the

potential of novel 225Ac-radiopharmaceuticals, preliminary radiolabeling and in vivo stud-

ies were conducted with a previously reported lactam bridge-cyclized α-melanocyte-
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stimulating hormone peptide conjugated to the DOTA chelator (DOTA-CycMSH or

CCZ01048) (Fig. 1).

To prepare 225Ac-labeled CCZ01048, the entire 225Ac fraction from a 225Ra/225Ac

separation (see 225Ac production and purification section) was evaporated to dry-

ness and reconstituted with 25 μL of 0.05 M HNO3. This
225Ac solution was com-

bined with CCZ01048 (20–80 μg, 25 μL in deionized water) and an ammonium

acetate buffer (1 M, pH 7, 35 μL). The reaction mixture was subsequently heated to

85 °C for 30 min, and reaction progress and RCYs determined using iTLC Method

B (see 225Ac radiolabeling studies and complex stability assays section). More de-

tails regarding the selection of conditions for labeling CCZ01048 with ISAC-

derived 225Ac can be found in Additional file 1: Section S2.

Following the radiolabeling reaction for the non-blocked in vivo experiments, HPLC

purification was performed to remove unbound 225AcIII and to separate radiolabeled

product from precursor to ensure high molar activity of the final product for preclinical

biodistribution studies. The reaction mixture was separated by HPLC using a semi-

preparative column eluted with 22% acetonitrile containing 0.1% TFA for 225Ac-

CCZ01048 at a flow rate of 4.5 mL/min. The retention time of the 225Ac-labeled

peptide was 9.5 min, compared to 10.0 min for the unlabeled peptide. The collected

radiolabeled peptide was diluted with deionized water and retained on a C18 SepPak

cartridge (Waters, preconditioned with 5 mL ethanol and 10 mL deionized water) to re-

move acetonitrile and TFA. The purified peptide was eluted with ethanol and diluted

with 0.9% NaCl saline. HPLC purification was not performed for the blocking studies,

but instead the radiolabeling reaction was diluted with ammonium formate (0.05M, 10

mL), loaded onto a pre-conditioned C18 SepPak to remove unlabelled 225AcIII, and the

purified peptide was eluted with ethanol and diluted with 0.9% NaCl. Quality control of

both reactions was conducted by iTLC-SG developed in citric acid (0.05M, pH 5);

under these conditions unbound 2225AcIII travels with the solvent front (Rf = 1) while
225Ac-bound to peptide remains at the baseline (Rf = 0). Both 225Ac tracers had radio-

chemical purity > 98%. To determine the final molar activities of the purified tracer

prior to in vivo injection, an aliquot of known volume (5–10 μL) was counted on the

HPGe gamma spectrometer, and 225Ac activity per unit volume was calculated. In par-

allel, a known volume of final diluted tracer was analyzed using analytical HPLC eluted

with 22% acetonitrile containing 0.1% TFA at a flow rate of 1 mL/min, and the amount

of peptide was quantified by integrating the peaks in the UV-Vis spectra (at 220 nm)

and comparing to a standard curve of the [La(CCZ01048)] complex. The retention

times of the unlabeled peptide and La-complex were 11.4 and 10.8 min, respectively.

The B16F10 melanoma cell line (Mus musculus) used in the tumour model was pur-

chased from ATTC (CRL-6475), and handled as previously described (Zhang et al.

2017). The cell line was confirmed pathogen-free by the IMPACT 1 mouse profile test

(IDEXX BioResearch). Cells were cultured in Dulbecco’s Modified Eagle’s Medium

(DMEM, StemCell Technologies) supplemented by 10% FBS, 100 U/mL penicillin and

100 μg/mL streptomycin at 37 °C in a humidified incubator containing 5% CO2. Cells

grown to approximately 90% confluence were washed with sterile 1× PBS (pH 7.4),

followed by trypsinization.

Biodistribution studies were performed using male C57BL/6 J mice. For tumour im-

plantation, mice were anesthetized using isoflurane on a precision vaporizer (5% for
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induction, and 2% for maintenance) in 2.0 L/min of oxygen, and 1 × 106 B16F10 cells

were implanted subcutaneously on the right back at the level of the forelimbs. Tumours

were allowed to grow and reach approximately 9 mm in diameter and used for biodis-

tribution studies. Mice were anesthetized, and injected with 12–20 kBq of 225Ac-

CCZ01048 prepared at either high molar activity (> 200 kBq/nmol for non-blocking,

n = 4) or low molar activity (1.2 kBq/nmol for blocking studies, n = 4).

After injection, the mice were allowed to roam freely in their cages and sacrificed

2 h post-injection by CO2 asphyxiation under isoflurane anesthesia. Cardiac punc-

ture was promptly performed to recover blood, and the organs of interest were

harvested, rinsed with 1× PBS, and blotted dry. Each organ was weighed, and the

radioactivity of the collected tissue was measured using a calibrated gamma coun-

ter 931(Packard Cobra II Auto-gamma counter, Perkin Elmer, Waltham, MA, USA)

using three energy windows: 60–120 keV (window A), 180–260 keV (window B),

and 400–480 keV (window C). Counting was performed both immediately following

sacrifice and after 7 days to ensure equilibrium of the 225Ac decay chain (Note:

secular equilibrium of 225Ac with its daughters is reached at about 24 h; samples in

this study were counted after 7 days due to availability of the gamma counter).

Counts were decay corrected from the time of injection and total organ weights

were used for the calculation of injected dose per gram of tissue (%ID/g). No dif-

ferences were noted between the data; therefore, the biodistributions are reported

using the data acquired using window A.

Results
225Ac production and purification

Mass A = 225, singly-charged (+ 1) ion beams produced at TRIUMF’s ISAC facility

contained 225Ra and 225Ac intensities between 4.0 × 106–1.6 × 108 and 3.8 × 106–

1.3 × 108 ions/s, respectively, depending on the state of the extraction electrode

and the availability of the laser ionisation source. 225Fr (t1/2 = 4.0 min) was also

present but decayed rapidly to 225Ra. For durations between 13.3–80.7 h, the 40

keV ions beams were implanted into an aluminum disk to a depth of 15–25 nm as

determined by SRIM (Ziegler et al. 2010). Etching of the radioactivity from the

aluminum target post-implantation with 500 μL of 0.1 M HCl resulted in 0.2–7.5

MBq of 225Ra and 0.16–18.0 MBq of 225Ac. A summary of the production runs is

shown in Table 1.

One-step purification of 225Ac from 225Ra on the DGA column reliably yielded a pure
225Ac product, free from parent isotope 225Ra, with yields > 90% as determined by

gamma ray spectroscopy. A second elution with an additional 0.5 mL of 0.05M HNO3

is typically able to recover the remaining 225Ac. The overall purification yield of 225Ac

from the target solution was > 98%. Example results from a single separation are shown

in Fig. 3. The load fraction containing 225Ra was retained and used as an 225Ac gener-

ator, providing a supply of 225Ac for nearly 3 months.

To quantify the amount of stable metal impurities present in the 225Ac product that

could compete with 225Ac during radiolabeling reactions, the chemical purity of the
225Ac was assessed via ICP-OES and ICP-MS. Modest values of aluminum with 7709 ±

1281 and 10175 ± 872 ppb (3.9 ± 0.6 and 5.1 ± 0.4 μg) were present in the first and
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second eluates, respectively, compared to 166,000 ppb (830 μg) present in the load

fraction (Table 2). The ~ 200-fold decrease of Al in the eluate 1 compared to the

initial load solution suggests that the DGA resin does a satisfactory job of remov-

ing excess AlIII from the 225AcIII product with a separation factor of ~ 102; how-

ever, an additional washing step may further decrease the amount of metal

impurity, which may in turn positively impact radiolabeling yields. Calcium, iron,

copper, nickel and zinc were found in the 225Ac product (elute 1) with amounts of

1392 ± 208, 203 ± 20, 47 ± 12, 19 ± 6, and 137 ± 21 ppb, respectively. If one assumes

the entire solution of eluate 1 (0.5 mL) were to contain 10MBq of 225Ac, the non-

radioactive impurities would account for 6970 ± 1158 atoms of aluminum, 847 ±

127 atoms of calcium, 88 ± 9 atoms of iron, 51 ± 8 atoms of zinc, 8 ± 2 atoms of

nickel, and 18 ± 5 atoms of copper per atom of actinium. Of concern are the high

Mn+:AcIII ratios of AlIII, FeIII, and CaII in the 225Ac eluate, since the gold standard

in actinium chelation, DOTA, also has a strong affinity for these metals (Clarke

and Martell 1991). Additional ICP-MS results for other elements (in ppb and μg)

can be found in Additional file 1: Section S3.

Table 1 Summary of 225Ra and 225Ac production runs at ISAC, TRIUMF’s ISOL facility. aEE =
extraction electrode; bLIS = laser ionization source

Implantation parameters Ion beam intensity [ions/s] Activity Produced [MBq]

Date duration [h] EEa LISb 225Ra 225Ac 225Ra 225Ac

Dec ‘15 13.3 Off Off 3.2 × 107 3.8 × 106 0.19 0.16

Apr ‘16 44.8 Off On 4.0 × 106 1.0 × 107 0.99 1.40

May ‘16 48.9 1.13 1.35

Aug ‘16 21.6 On On 1.6 × 108 5.7 × 107 7.1 10.5

Dec ‘16 45.0 On On 9.3 × 107 1.3 × 108 6.8 18.0

Apr ‘17 80.7 Off On 9.0 × 107 2.8 × 106 7.5 1.7

Sept ‘18 ~ 40 On Off 1.0 × 108 1.6 × 107 8.6 9.4

Fig. 3 Representative elution profile for 225Ra/225Ac separation on DGA branched resin in nitric acid media
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225Ac radiolabeling studies

The phosphinic acid ligand (phospa)6− was able to efficiently complex 225AcIII (radio-

chemical yield, RCY 95%) in one hour at ambient temperature, pH 5.5, and 10− 3 M lig-

and concentrations; with decreasing ligand concentrations (10− 4, 10− 5, 10− 6 M), RCYs

dropped sequentially from 82, 14, to 0%, respectively. At even 10− 3 M ligand concen-

tration, nonadentate ligand (p-NO2-Bn-neunpa)
4− displayed only a moderate radio-

chemical yield (56%) after 1 h at ambient temperature. Heating increased the RCY to

87% under the same ligand concentration and time (Additional file 1: Table S1).

The octadentate ligand (octapa)4− efficiently complexed (RCY > 95%) 225AcIII at 10− 4

and 10− 5 M ligand concentrations after one hour at ambient temperature, while the

RCY dropped to 7% at a ligand concentration of 10− 6 M. After only 30 min, radiolabel-

ing was determined to be incomplete even at the 10− 4 M ligand concentration (RCY =

77%), and thus 60-min timepoints were used to test the remaining labeling reactions

for (octapa)4−. The chiral derivative, (CHXoctapa)4− was able to efficiently complex
225AcIII at ambient temperature in one hour at 10− 4, 10− 5 and 10− 6 M, exhibiting RCYs

of 91, 94 and 94%, respectively; at ligand concentration of 10− 7 M, RCY decreased to

4%. Radiochemical yields > 90% were also obtained at 10–4 to − 6 M ligand after 30 min.

DOTA was inefficient at complexing 225AcIII at ambient temperature, and required

heating to 85 °C to induce 225AcIII labeling (Additional file 1: Table S1).

Previously published 225Ac radiolabeling results with ligands (macropa)2− and

(bispa2)2−, (Comba et al. 2017; Thiele et al. 2017), which were performed with the same

source of 225Ac are also plotted in Fig. 4 for comparison. As previously reported, octa-

dentate bispidine, (bispa2)2−, was able to efficiently complex 225Ac after one hour at

ambient temperature with ligand concentrations of 10− 4 and 10− 5 M (RCYs of 98 and

94%, respectively). At ligand concentrations of 10− 6, 10− 7, and 10− 8 M, 225Ac RCYs de-

creased sequentially to 64, 15, and 2%, respectively. Unlike the gold standard DOTA

and the rest of the tested pro-ligands (H4octapa, H4CHXoctapa, p-NO2-Bn-H4neunpa,

H6phospa), the 18-membered macrocycle, macropa, can quantitatively complex 225Ac

(RCYs > 95%) at ligand concentrations as low as 10− 7 M, in 5 min at ambient

temperature (Thiele et al. 2017).

The stability of 225Ac complexes in human serum for [225Ac(octapa)]−,

[225Ac(CHXoctapa)]−, [225Ac(phospa)]3− [225Ac(DOTA)]−, [225Ac(bispa2)]+, and

[225Ac(macropa)]+ is shown in Table 3. The inability of p-NO2-Bn-H4neunpa to quanti-

tatively complex 225AcIII under any tested conditions precluded us from testing the sta-

bility of the resulting [225Ac(p-NO2-Bn-neunpa)]
− complex. The [225Ac(octapa)]− and

[225Ac(CHXoctapa)]− complexes exhibited favourable stabilities in human serum,

remaining 92.9 ± 1.0 and 95.6 ± 1.6% intact after 7 days, respectively, while

[225Ac(phospa)]3− was moderately stable in serum, remaining 77.1 ± 6.4% intact after 7

Table 2 Trace metal content in ppb (μg/L) determined by ICP-MS (n = 2)

Fraction Al Ca Fe Cu Ni Zn

Load 166000a 47.4 ± 0.8 274 ± 45 32 ± 11 18 ± 15 57 ± 25

Wash 14000a 63 ± 8 94 ± 3 12 ± 5 76 ± 94 36 ± 5

Elute 1 7709 ± 1281 1392 ± 208 203 ± 20 47 ± 12 19 ± 6 137 ± 21

Elute 2 10175 ± 872 745 ± 24 427 ± 192 46 ± 5 37 ± 17 134 ± 23
a values determined by ICP-OES, n = 1
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days. The commercial standard [225Ac(DOTA)]− remained sufficiently intact after 7

days (84.7 ± 8.1%). Both the previously reported [225Ac(bispa2)]+ and [225Ac(macropa)]+

complexes, which remained 88.9 ± 2.8 and 90% intact after 7 days in serum, respect-

ively, show promising complex stabilities (Thiele et al. 2017), but slightly lower than

the [225Ac(octapa)]− and [225Ac(CHXoctapa)]− complexes.

The results of the LaIII exchange competition assay are summarized in Table 4 and

compared to previously reported values for [225Ac(macropa)]+ and [225Ac(bispa2)]+

(Comba et al. 2017; Thiele et al. 2017). The 225AcIII was readily displaced from the

[225Ac(phospa)]3− complex upon addition of excess LaIII. After 1 h, none of the 225AcIII

remained complexed to (phospa)6−, suggesting that (phospa)6− does not form

Table 3 Stability of 225Ac-labelled chelate complexes in human serum at ambient Temperatures
(n = 3 unless otherwise noted)
225Ac-complex Time Point

% Stable 0.5 h 1 h 4 h 1 d 2 d 3 d 4 d 7 d

[225Ac(octapa)]− NDa 97.9 ±
0.9

96.9 ±
1.5

94.9 ±
1.2

96.1 ±
1.0

94.9 ±
1.1

95.9 ±
1.9

92.9 ±
1.0

[225Ac(CHXoctapa)]− b NDa 95.9 ±
1.0

96.8 ±
1.7

97.0 ±
0.9

96.7 ±
1.6

96.1 ±
1.5

96.7 ±
1.2

95.6 ±
1.6

[225Ac(phospa)]3− NDa 81.6 ±
1.1

NDa 81.5 ±
0.2

NDa 80.2 ±
1.1

76.2 ±
0.1

77.1 ±
6.4

[225Ac(DOTA)]− 92.4 ±
4.0

93.9 ±
4.5

94.4 ±
3.7

90.9 ±
5.6

91.8 ±
5.6

NDa 91.1 ±
6.1

84.7 ±
8.1

[225Ac(macropa)]+ (Thiele et al.
2017) c

96 95 93 90 93 90 NDa 90

[225Ac(bispa2)]+ (Comba et al.
2017)

NDa 97.4 ±
0.5

NDa 92.3 ±
0.7

NDa 90.7 ±
0.5

NDa 88.9 ±
2.8

Control 1.45 ±
3.8

1.29 ±
4.0

1.6 ±
3.5

2.6 ±
5.0

3.9 ±
3.0

NDa 0.96 ±
3.3

1.5 ±
4.1

aND not determined; bn = 4; cn = 1

Fig. 4 Radiochemical yields (RCY, %) for 225AcIII radiolabeling reactions of DOTA (RT, 2 h, pH 5.5; 85 °C, 30
min, pH 7, H4octapa (RT, 1 h, pH 5.5), H3CHXoctapa (RT, 1 h, pH 5.5), H4neunpa (RT, 1 h, pH 5.5), H6phospa
(RT, 1 h, pH 5.5), H2bispa

2 (RT, 1 h, pH 5.5) and macropa (RT, 5 min, pH 7) for comparison, at ambient
temperature (RT) and ligand concentrations 10− 3 to 10− 8 M
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kinetically inert complexes with AcIII and readily forms complexes with LaIII. Signifi-

cant decomplexation of the [225Ac(octapa)]− complex was observed over a short period

of time, with 78.9 ± 2.9, 42.7 ± 0.3, 4.7 ± 1.5, 6.1 ± 2.6% of the complex remaining intact

after 1 h, 5 h, 1 d, and 2 d, respectively. The [225Ac(CHXoctapa)]− complex displayed slightly

delayed decomplexation kinetics compared to the (octapa)4− complex, with 81.8 ± 4.3,

45.7 ± 3.1, 26.5 ± 8.9, 18.1 ± 0.4, 5.0 ± 0.4, 3.9 ± 0.6% intact 225Ac-complex remaining after 5

h, 1, 2, 3, 6, and 7 d, respectively. The cyclohexyl backbone of H4CHXoctapa was designed

to pre-organize the donor atoms of the linear chelating ligand, in hopes to form more kinet-

ically inert complexes compared to the achiral analogue H4octapa (Ramogida et al. 2015).

The results of the LaIII exchange study suggest that the introduction of the cyclohexyl

diamine backbone indeed delay the kinetics of exchange of (CHXoctapa)4− and its metal

complexes compared to (octapa)4− complexes, though neither [225Ac(octapa)]− or

[225Ac(CHXoctapa)]− were able to sufficiently withstand transchelation at later time points.

In contrast, [225Ac(macropa)]−, [225Ac(DOTA)]−, and [225Ac(bispa2)]− remained 91, 77.1 ±

3.6, and 71.1 ± 2.7% intact after 7 days. In summary, taking into consideration the results

from the LaIII exchange competition assay, a trend in the robustness of the resulting 225Ac-

complexes can be drawn as follows: (phospa)6− < (octapa)4− < (CHXoctapa)4− < (bispa2)2− ~

(DOTA)4− < (macropa)2−.

Bioconjugate labeling studies and pilot in vivo studies with 225Ac-DOTA-CycMSH

The DOTA-bioconjugates, DOTATOC were radiolabeled with ISOL-derived 225Ac with

moderate to poor yields. After heating at 85 °C for 40 min, [225Ac]Ac-DOTATOC radi-

olabeling yields of 91 ± 5% (n = 3, 37 kBq 225Ac used per reaction) or 43 ± 14% (n = 3,

1.5MBq 225Ac used per reaction) were obtained, heating for longer periods of time did

not increase radiolabeling yield.

[225Ac]Ac-CCZ01048 radiotracers were prepared with molar activities of > 200 kBq/

nmol or 1.6 kBq/nmol, for non-blocked and blocked in vivo biodistribution experiments,

respectively. Results from CCZ01048 radiolabeling studies with varying concentrations of
225Ac and precursor are shown in Additional file 1: Section S2. In general, high 225Ac radi-

olabeling yields (> 95%) of CCZ01048 were obtained when 60 μg (39 nmol) or more pre-

cursor was added, and radiolabeling yields dropped dramatically (57%) when 50 μg (33

nmol) of precursor was used.

Table 4 Stability of 225Ac-Labelled Chelate Complexes in 50-fold excess LaIII at ambient
temperature

Ligand % stable

Time point: 1 h 5 h 1 d 2 d 3 d 6 d 7 d

[225Ac(octapa)]− (n = 2) 78.9 ± 2.9 42.7 ± 0.3 4.7 ± 1.5 6.1 ± 2.6 NDa NDa NDa

[225Ac(CHXoctapa)]− (n = 2) NDa 81.8 ± 4.3 45.7 ± 3.1 26.5 ± 8.9 18.1 ± 0.4 5.0 ± 0.4 3.9 ± 0.6

[225Ac(phospa)]3− (n = 3) 0 0 NDa NDa NDa NDa NDa

[225Ac(DOTA)]− (n = 2) 95.2 ± 3.3 94.5 ± 3.5 94.9 ± 2.9 86.2 ± 3.1 NDa NDa 77.1 ± 3.6

[225Ac(macropa)]+

(Thiele et al. 2017)
95 NDa 93 92 91 93 91b

[225Ac(bispa2)]+

(Comba et al. 2017)
NDa 95.5 ± 0.2 91.5 ± 0.7 88.8 ± 2.5 85.2 ± 1.7 74.4 ± 1.4 71.1 ± 2.7

aND not determined. b8 d time point
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Biodistribution results of the non-blocked experiment revealed tumour uptake at 2 h post

injection of 5.23 ± 1.78%ID/g, with tumour-to-blood, tumour-to-bone, and tumour-to-

kidney ratios of 20.42 ± 3.38, 23.16 ± 10.32, and 1.09 ± 0.11%ID/g, respectively (see Table 5).

Uptake in other organs is shown in Fig. 5. To confirm the tumour uptake was receptor me-

diated, a blocking experiment was conducted by injecting low molar activity 225Ac-tracer

(1.6 kBq/nmol) in tumour-bearing mice. As expected tumour uptake at 2 h post-injection

decreased to 1.15 ± 0.21%ID/g, while kidney uptake increased to 8.85 ± 1.19% ID/g (com-

pared to 4.83 ± 1.58%ID/g from non-blocked experiment). These results agree with the

previously reported 68Ga-labeled tracer (Zhang et al. 2017).

Discussion
225Ac obtained from TRIUMF’s ISOL facility was purified using a simple method with

a high yield (> 98%), high radionuclidic purity (> 98%) and chemical purity suitable for

preclinical screening of potential targeted alpha therapy compounds (Comba et al.

2017; Thiele et al. 2017). The entire purification process, from target dissolution to

radiochemical purification is typically completed in under 2 h and produces less than

10mL of radioactive liquid waste. In comparison, the current supply of 225Ac which is

separated from a 229Th stock requires at least four separate column purifications to

remove the multi-gram quantities of Th from Ra/Ac, evaporation procedures, and pro-

duces several litres of radioactive liquid waste with anywhere between 85 and 95% Ac

recovery yields and > 99% radionuclidic purity (Robertson et al. 2018). For a detailed

discussion of the current production and purification methods of 225Ac the reader is re-

ferred to the following review article (Robertson et al. 2018). Since the mass separator

is of high resolution and efficiency, ISOL derived 225Ac can provide a radiochemically

pure product without the need to chemically separate from multi-gram Th quantities

or other target materials, allowing facile and rapid 225Ac purification using minimal

solvent volumes. The main current disadvantage of the ISOL method for 225Ra/225Ac

production is the limited yield that can be produced; the highest amount of 225Ac and
225Ra was 18.0MBq and 8.6MBq, respectively, from any one implantation (not includ-

ing additional 225Ac activity isolated from the 225Ra generator).

Potential improvements to this ISOL 225Ac source are possible and include: using

higher proton beam currents (up to 100 μA) to increase 225Ra and 225Ac production in-

side the uranium target; increasing ISAC beam availability for 225Ac production to

allow for longer implantations; and utilization of alternative implantation target mate-

rials (other than aluminum) to increase 225Ac product chemical purity. For example, fu-

ture work to directly implant ion beams into metal-free media (e.g., ultra-pure water,

buffers, dilute acids) is underway and would significantly decrease nonradioactive

metal-impurities in the 225Ac fraction. In principal, ISOL-medical isotope production

Table 5 Summary of in vivo biodistribution studies of [225Ac]Ac-CCZ01048 at 2 h post-injection.
Statistical analysis between non-blocked and blocked experiments was performed using the
Student’s t-test (* p < 0.05; ** p < 0.005; n = 4 for each animal experiment)

Study Molar activity
(kBq/nmol)

Tumour
(%ID/g)

Kidney
(%ID/g)

Blood
(%ID/g)

Tumour:
blood

Tumour:
bone

Tumour:
kidney

Non-
blocked

> 200 5.23 ± 1.78 4.83 ± 1.58 0.25 ± 0.07 20.42 ± 3.38 23.16 ± 10.32 1.09 ± 0.11

Blocked 1.6 1.15 ± 0.21** 8.85 ± 1.19* 0.34 ± 0.09 3.50 ± 0.72** 1.22 ± 0.27** 0.13 ± 0.04**
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can provide radioisotopes of the highest radiochemical purity, as it relies on extraction

and high-resolution mass separation of the ion beams. Using the current ISAC facil-

ities, ISOL could theoretically produce up to 370MBq of 225Ac per month (given the

maximum measured ISAC beam intensities of 1.3 × 108 ions/s and 1.6 × 108 ions/s for
225Ac and 225Ra, respectively, and three 10-day implantations) (Robertson et al. 2018).

Increasing the beam current from 10 to 100 μA would further increase yields 10x and

replacing uranium carbide targets with thorium targets should increase yields by 8.39x.

Given these potential improvements, maximum annual 225Ac production per ISOL fa-

cility (191 GBq/year) could surpass the production via 229Th decay (63 GBq/year) (Rob-

ertson et al. 2018). While 225Ac produced via ISOL has the advantage of low cost for

grant-funded academic researchers, compared to other 225Ac suppliers, with the

current facility, there are disadvantages related to the reliability, consistency, and fre-

quency of production runs (see Table 1). In our experience, this has made it challenging

to plan more involved in vivo studies. As new sources of 225Ac begin to emerge (11th

International Symposium on Targeted Alpha Therapy (TAT11), 2019; Robertson et al.

2017), medical radionuclide production at TRIUMF’s ISAC facility will transition to-

wards less accessible radionuclides in order to harness the main advantage of ISOL fa-

cilities for medical isotope production – the flexibility to provide quick access to a

diverse range of high-purity medical radionuclides without needing to establish

radionuclide-specific production infrastructure or processes (Robertson et al. 2018; dos

Santos Augusto et al. 2014; Kunz et al. 2018). The limitations of ISAC-produced 225Ac

for preclinical research are highlighted by challenges associated with the 225Ac-DOTA-

CycMSH study: the relatively low levels of 225Ac isolated by the ISOL method required

the entire isolated 225Ac fraction for one radiolabeling reaction to isolate enough puri-

fied radiotracer for one set of preclinical in vivo studies (see Additional file 1: Section

S2). The larger amount of precursor needed to provide high RCY consequently resulted

in a lower molar activity product, and though HPLC purification can be used to remove

excess unlabeled peptide and increase molar activity, this also results in a loss of prod-

uct. Preliminary 225Ac radiolabeling of DOTATOC (with 25 μg) was also accomplished,

using low (37 kBq) or high (1.5MBq) 225Ac radioactivities, and a similar trend in

Fig. 5 Blocked and non-blocked biodistribution results (both n = 4) of [225Ac]Ac-CCZ01048 at
2 h post-injection
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radiolabeling yield was observed. Moderately high radiolabeling yields (91 ± 5%, n = 3,

with calculated molar activities between 1.8–2.0 kBq/nmol) were obtained when low ac-

tivities were used, while yields decreased significantly (43 ± 14%, n = 3, with calculated

molar activities between 25 and 50 kBq/nmol) when 1.5 MBq of 225Ac was used in

the labeling reaction. Presumably, the added non-radioactive impurities introduced

by the increased amount of 225Ac added to the radiolabeling solution in the high

radioactivity labeling reactions hampers radiolabeling yields. In comparison, previ-

ously published reports of DOTATOC radiolabeling yields using (commercially

available) 229Th-derived 225Ac were 90 ± 4% (Miederer et al. 2008) which yielded

molar activities between 57 and 171 kBq/nmol.

The moderate to poor 225Ac radiolabeling yields of DOTATOC and DOTA-CycMSH

with decreasing ligand concentration further highlights the need to develop chelating

ligands that have high affinity for 225AcIII. Of the ligands reported in the 225 Ac radiola-

beling studies section, the high radiochemical yields and favourable stabilities in serum

of the two new 225Ac-complexes studied here, [225Ac(octapa)]− and [225Ac(CHXoc-

tapa)]−, suggests that these ligands may be good candidates for incorporation into a

bioconjugate for 225Ac targeted alpha therapy. Though in vitro human serum stability

assays are a widely used and accepted assay to predict the in vivo robustness of

radiometal-chelate complexes (Ramogida and Orvig 2013; Price and Orvig 2014), in

vivo biodistribution studies of [225Ac(octapa)]− and [225Ac(CHXoctapa)]− compared

to [225Ac(DOTA)]− or [225Ac(macropa)]+ would validate the in vitro results and as-

sess the clearance and uptake profiles of the radiometal complexes and indeed are

planned for future studies as we secure other higher sources of 225Ac. The results

of the LaIII exchange studies should also be interpreted with caution; this assay is

helpful to assess the kinetic inertness or the kinetic off rates of the pre-formed
225Ac-complexes, but the use of a “surrogate element” (i.e. LaIII) introduces potential bias

as it is not known if the chelators will have the same affinity for AcIII as they do LaIII. For

example, the [225Ac(CHXoctapa)]− complex outperforms [225Ac(macropa)]+ in the 7 day

serum stability challenge (95.6 ± 1.6 and 90%, respectively), yet [225Ac(CHXoctapa)]− dis-

sociates (3.9 ± 0.6% intact after 7 days) in the presence of excess LaIII; this may be due to

(CHXoctapa)4− affinity for LaIII and less so than the inertness of [225Ac(CHXoctapa)]−.

Additional competitive radiolabeling experiments in which excess of non-radioactive ions

such as NaI, CaII, MgII, FeIII followed by 225AcIII and chelator would further corroborate

the selectivity of a chelator for AcIII (Deri et al. 2014).

Based on this preliminary data, macropa remains the most efficient ligand for 225Ac

radiolabeling, though all the “pa” ligands tested represent an advantage compared to

DOTA as they can complex 225Ac to at least some degree at ambient temperature.

The preliminary biodistribution studies of [225Ac]Ac-CCZ01048 revealed elevated

tumour uptake of 5.23 ± 1.78%ID/g at 2 h p.i. While blocking studies confirmed that

the uptake was receptor mediated, the excess amount of unlabelled precursor delayed

the clearance of [225Ac]Ac-CCZ01048, and thus higher background levels in the

kidneys and liver were observed, which was expected and in line with the results of the

[68Ga]Ga-CCZ01048 PET imaging study (Zhang et al. 2017). The previously reported

[68Ga]Ga-CCZ01048 tracer exhibited a higher tumour uptake of 21.9 ± 4.6%ID/g at 2 h

p.i. (Zhang et al. 2017); this large discrepancy in tumour uptake may be explained by

the differences in molar activity of the final injected tracers. The molar activity of the
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225Ac-bioconjugate (200 kBq/nmol) is equivalent to one in every ~ 2440 peptide mole-

cules labelled with 225Ac, while the reported molar activity of the injected 68Ga-tracer

(236.8 ± 66.6MBq/nmol) (Zhang et al. 2017) is equivalent to one in every ~ 433 peptide

molecules labelled with 68Ga; a 5.6x difference. The lower radioactivity levels obtainable

with ISOL derived 225Ac, coupled with the moderate radiolabeling yields precluded the

isolation of an 225Ac-labelled conjugate with higher molar activity. Nonetheless, these

preliminary studies show ISOL-derived 225Ac can be used to drive preclinical radiophar-

maceutical development. Additionally, in vivo studies show proof-of-concept that

CCZ01048 may be a promising candidate for further therapy studies with 225Ac targeted

alpha therapy, which can be enabled by 225Ac obtained via other 225Ac production routes.

Conclusions
225Ra/225Ac ion beams produced at TRIUMF’s ISOL facility, were successfully used to

produce 225Ac quantities sufficient for preclinical radiopharmaceutical screening (up to

18.0MBq). The radiochemical separation of 225Ac from 225Ra was achieved on a solid

phase extraction resin in high yields (> 98%) and as a radionuclidically pure product.

The purified 225Ac was in a form amenable for radiolabeling and was used to screen a

library of acyclic picolinic polydentate chelators for their ability to bind 225AcIII, and

perform preliminary radiolabeling of DOTA-bioconjguates. Finally, a DOTA-CycMSH

conjugate was radiolabeled with ISOL-derived 225Ac, and proof-of-principle biodistri-

bution studies were conducted in mice bearing B16F10 tumours. Receptor-mediated

localization of the 225Ac-DOTA-CycMSH tracer was confirmed by a blocking experi-

ment, suggesting that this peptide would be a promising candidate for further preclin-

ical testing in vivo for targeted alpha therapy with 225Ac. In conclusion, together these

studies show that ISOL-derived 225Ac can successfully be used to screen new chelating

ligands for AcIII coordination and be used to drive preclinical radiopharmaceutical

development.
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