
EJNMMI Radiopharmacy
                and Chemistry 

Li et al. EJNMMI Radiopharmacy and Chemistry  (2016) 1:15 
DOI 10.1186/s41181-016-0018-0
RESEARCH Open Access
Automation of the Radiosynthesis of Six
Different 18F-labeled radiotracers on the
AllinOne

Shihong Li, Alexander Schmitz, Hsiaoju Lee and Robert H. Mach*
* Correspondence:
rmach@mail.med.upenn.edu
Department of Radiology, University
of Pennsylvania, Philadelphia, PA,
USA
©
L
p
i

Abstract

Background: Fast implementation of positron emission tomography (PET) into clinical
and preclinical studies highly demands automated synthesis for the preparation of PET
radiopharmaceuticals in a safe and reproducible manner. The aim of this study was to
develop automated synthesis methods for these six 18F-labeled radiopharmaceuticals
produced on a routine basis at the University of Pennsylvania using the AllinOne
synthesis module.

Results: The development of automated syntheses with varying complexity was
accomplished including HPLC purification, SPE procedures and final formulation with
sterile filtration. The six radiopharmaceuticals were obtained in high yield and high
specific activity with full automation on the AllinOne synthesis module under current
good manufacturing practice (cGMP) guidelines.

Conclusion: The study demonstrates the versatility of this synthesis module for the
preparation of a wide variety of 18F-labeled radiopharmaceuticals for PET imaging studies.
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Background
Positron emission tomography (PET) facilities have recently been growing exponen-

tially as PET is an especially sensitive molecular imaging technique quantitatively

measuring tracers in nano- to picomolar range in comparison with other modalities

like magnetic resonance imaging (MRI) or computerized tomography (CT). The main

limitation of PET is the short half-lives of the radionuclides used in the development

of PET radiotracers. Among the most popular positron-emitting radionuclides, short

half-life radionuclides like oxygen-15 and nitrogen-13 are used for brain perfusion

studies ([15O]H2O) and heart perfusion studies ([13N]NH3) respectively (Bergmann

et al., 1989; Grüner et al., 2011; Muzik et al., 1993). The 20.4 min half-life of carbon-11

and the rapid production of reactive intermediates such as [11C]methyl iodide and

[11C]methyltriflate have facilitated the generation of 11C-labeled radiotracers for a var-

iety of imaging applications. However, the 110 min half-life of fluorine-18 has firmly

established itself as the radionuclide of choice for imaging applications since it allows

for longer data acquisition for dynamic imaging studies and high count rates for me-

tabolite analyses which are often required for quantitative PET imaging studies. In
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addition, fluorine-18 has a relatively low energy (maximum 0.635 MeV) and thus the

emitted positron has a short mean range (2.39 mm in water) (Vallabhajosula, 2009).

The methods for fluorine-18 labeling have been greatly improved in the last 30 years,

largely due to recent advances in organic fluorination chemistry (Brooks et al., 2014;

Jacobson et al., 2015; Kamlet et al., 2013; Li and Conti, 2010; Mach and Schwarz, 2010;

Rotstein et al., 2014). Therefore, the utilization of 18F-labeled radiopharmaceuticals for hu-

man studies has expanded greatly in various areas of clinical research, such as cancer,

neurological disorders, and cardiac diseases. The key requirements for the synthesis of ra-

diopharmaceuticals used for clinical PET studies are reproducibility, reliability and short

synthesis time. Full automation is also important, especially for general-purpose nucleo-

philic radiofluorination reactions. The historical background and evolution of automated

synthesis for radiopharmaceuticals has been described in a number of excellent reviews (I

Sachinidis et al., 2010; Krasikova, 2007; Preshlock et al., 2016; Shao et al., 2011; Welch and

Redvanly, 2003), and a guidance on current good radiopharmaceuticals using automated

modules was created in Europe in 2014 (Aerts et al., 2014). There are a number of

commercially-available automated synthesis modules designed for [18F]FDG radiosynthesis,

and these have been modified for the synthesis of other 18F-labeled radiotracers. These auto-

mated modules are designed to conduct 2–3 organic reactions, followed by either resin-

based SPE and/or HPLC purification. Examples of commercial modules include FAS-

TLabTM, TracerLab™ FXFN series (GE Healthcare), E-Z modules (Eckert & Ziegler modular

lab) and Explora® series (Siemens Healthcare). Recently, the AllinOne, an automated

synthesizer by Trasis, was developed as a universal GMP-compliant synthesis module for

radiolabeling of radiotracers with short half-life radionuclides. This module is described as

being versatile and capable of handling complex chemistry. The instrument can be broken

down to the chemistry module, purification module and reformulation module. Disposable

cassettes, reagents and components are used to ease the burden on cleaning. Successful pro-

duction with high yield and high specific activity to the following compound, such as

[18F]F-DOPA, [18F]FDG, [18F]MPPF, [18F]FES, [18F]F-MISO, [18F]FET, and [18F]FLT has

been reported (Otabashi et al., 2015). These radiotracers were developed many years ago

and have been used on either an intermediate to widespread basis in PET imaging studies.

Although [18F]FDG is an effective tumor-imaging agent for diagnosis, staging, restaging

and monitoring various malignant conditions, its utilization has several well-known limi-

tations (Lind et al., 2004; Liu et al., 2014; Lubezky et al., 2007; Pery et al., 2010; Suzuki

et al., 2008), such as non FDG-avid tumors (e.g. prostate cancer) and non-cancerous

FDG-avid tissue (e.g. inflammatory tissue). Therefore, the introduction of new PET radio-

pharmaceuticals capable of filling these gaps is clearly needed. Recently, glutamine was

suggested as alternative source of metabolic energy for tumor cells (Wise et al., 2008).

Glutaminolysis, especially in myc-overexpressing cells, plays a significant role in tumor

growth and metabolism. Fluorine-substituted glutamine analogs have been particularly

useful in PET imaging studies, with [18F]-(2S,4R)4-Fluoroglutamine ([18F]F-Gln) being the

most promising metabolic tracer for imaging glutamine metabolism (Lieberman et al.,

2011; Ploessl et al., 2012; Qu et al., 2010).

The development of small molecules targeting proteins overexpressed in cancer

cells is another application that is gaining and has increased importance in onco-

logic imaging studies. For example, the sigma-2 receptor is overexpressed in most

human and murine tumors and has been proposed as a biomarker for imaging
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tumor cell proliferation (Mach et al., 1997). The selective sigma-2 receptor radio-

tracer [18F]ISO-1 was evaluated in Balb/c female mice bearing EMT-6 mammary al-

lografts, and an initial evaluation of this radiotracer in patients with either

lymphoma, breast or head & neck cancer was recently reported (Tu et al., 2007).

The high correlation of tumor-to-muscle ratio to Ki-67 scores indicates that

[18F]ISO-1 may provide a novel method for imaging the proliferative status of solid

tumors. [18F]ISO-1 may be capable of stratifying patients into groups of high or low

proliferative status, which is expected to be useful in selecting patients who are

likely to respond to cell cycle specific chemotherapeutics (Dehdashti et al., 2013).

Meanwhile, poly ADP-ribose polymerase-1 (PARP-1) is critical to DNA repair and

PARP-1 inhibition has been demonstrated as an effective method for inducing syn-

thetic lethality in cancers depending on PARP-1 activity for survival. The uptake of

the PARP-1 radiotracer, [18F]FluorThanatrace ([18F]FTT), was found to correlate

with PARP-1 expression (Edmonds et al., 2016; Zhou et al., 2014). Quantifying tu-

moral PARP-1 activity with PET should be particularly useful for occupancy studies

aimed at determining the optimal dose of a PARP-1 inhibitor generating an optimal

therapeutic response.

In addition to radiopharmaceuticals used for cancer imaging, a number of receptor-

based radiopharmaceuticals have been developed to study a wide variety of central ner-

vous system (CNS) disorders including Alzheimer’s disease (AD), Parkinson’s disease

(PD), depression and drug addiction (Sokoloff et al., 1990). [18F]Flubatine, short for (-)-

[18F]flubatine, has been used to image nicotinic acetylcholine receptors (nAChRs) since

a dysfunction of the cholinergic neurotransmitter system is one factor contributing to

cognitive decline in neurodegenerative disorders such as Alzheimer’s disease (Bois

et al., 2015; Gallezot et al., 2014; Hockley et al., 2013; Wu et al., 2010). [18F]Fallypride

has been developed to study extrastriatal dopamine D2 receptor expression in a number

of neuropsychiatric disorders (Mukherjee et al., 1995; Mukherjee et al., 1997; Mukher-

jee et al., 2002; Riccardi et al., 2006; Slifstein et al., 2010). And finally, our group has de-

veloped the first high affinity, D3–selective PET ligand, [18F]Fluortriopride ([18F]FTP),

which has demonstrated feasibility for imaging D3 receptors in non-human primate

brain, following depletion of endogenous dopamine (Mach et al., 2011; Tu et al., 2011).

Although straightforward in theory, the adaptation of structurally-diverse PET radio-

tracer syntheses onto an automated system requires considerable expertise in the field of

organic chemistry and chemical engineering. In the current report, we describe the fully

automated syntheses on the AllinOne module of the six radiotracers described above

(Fig. 1). The automation process includes radiolabeling, purification, formulation and sys-

tem cleaning. To date, [18F]ISO-1, [18F]FTP and [18F]FTT have been reliably produced for

use in phase 0 clinical studies, while [18F]F-Gln, [18F]flubatine and [18F]fallypride were

used for microPET, cell uptake and metabolism studies.

Methods
Materials for synthesis and analysis

[18F]F-Gln tosylate precursor, (2S, 4R)-tert-butyl-2-(tert-butoxycarbonylamino)-5-oxo-4-

(tosyloxy)-5-(2, 4, 6-trimethoxybenzylamino)pentanoate, and reference standard were ob-

tained from MSKCCC (New York, USA) or from Dr. Hank Kung. [18F]ISO-1 reference

standard and its mesylate precursor, 2-(2-((4-(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-



Fig. 1 Structures of six radiotracers synthesized on the AllinOne module
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yl)butyl)carbamoyl)-4-methylphenoxy)ethyl methanesulfonate,; [18F]FTT reference standard

and its precursor, 2-(4-(6-oxo-6,7,8,9-tetrahydro-2,7,9a-triazabenzo[cd]azulen-1-yl)phenox-

y)ethyl 4-methylbenzenesulfonate; and [18F]FTP reference standard and its precursor 2-(2-

(4-(4-(4-(thiophen-2-yl)benzamido)butyl)piperazin-1-yl)phenoxy)ethyl methanesulfonate,

were made in our lab under GLP conditions. Cryptand (as shown as K222 in the following

text), [18F]fallypride reference standard and its tosylate precursor, and [18F]flubatine refer-

ence standard and its iodide precursor were all obtained from ABX (Radeberg, German).

Acetonitrile (MeCN, anhydrous for synthesis; HPLC grade for purification and analysis),

dimethylformamide (DMF, anhydrous, dried over molecular sieves (4 Å)), dimethyl sulfox-

ide (DMSO, anhydrous, dried over molecular sieves (4 Å)), methanol (MeOH, HPLC

grade), potassium carbonate (K2CO3, ACS grade), ammonium formate (NH4HCO2, ACS

grade), ammonium bicarbonate (NH4HCO3, ACS grade) were purchased from Sigma-

Aldrich (St Louis, USA). Water (DIUF grade) and trifluoroacetic acid (TFA, anhydrous,

HPLC grade) were purchased from Fisher Scientific (Pittsburgh, USA). Cartridges used for

solid phase extractions, such as Sep-Pak QMA Carb Cartridges, Sep-Pak C18 Plus Car-

tridges, Sep-Pak tC18 Cartridges, Alumina N Plus Cartridges, Sep-Pak Dry Sodium Sulfate

Plus Long Cartridges, and Sep-Pak Silica Plus Long Cartridges, were purchased from Wa-

ters (Milford, USA). Sterile water for injection (250 mL bags) was purchased from B. Braun

(Melsungen, Germany). Sterile normal saline (0.9 % w/v) was purchased from Hospira (Lake

Forest, USA) and ethanol (200 proof, USP grade) was from Decon Labs (King of Prussia,

USA). 18O water (>97 %) was purchased from Huayi Isotopes (Changshu, China) or ABX

(Radeberg, Germany). Low-protein binding 0.2 μm sterile filters, Millex® FG filters, were ob-

tained from Millipore (Bedford, USA) and 0.45 μm nylon filters, Whatman Puradisc®, were

purchased from GE Healthcare (Marlborough, USA). All other chemicals and solvents for

radiosyntheses were obtained from Sigma-Aldrich or Fisher Scientific. These chemicals are

at least ACS grade and used without further purification. AllinOne synthesis module and all

consumable parts were purchased from TRASIS (Ans, Belgium).

Instrumentation for general procedures

The AllinOne synthesis module is a thirty-actuator version (with option for 18–36 ac-

tuators), with two reaction vessels, and a built-in HPLC system with UV detector and

radioactivity detector. The cassette is structured around zero dead volume three-way



Li et al. EJNMMI Radiopharmacy and Chemistry  (2016) 1:15 Page 5 of 19
valve manifolds. Each manifold contains six-valve positions and can be extended or re-

moved freely. Each position can be assigned to reagent vials, SPE cartridges, syringes or

others functions. Those connections are mostly through spikes and tubing. All compo-

nents are compatible with the most aggressive acids, bases and solvents. Generally

speaking, we use the first six valves for F-18 drying, the second set of valves for first-

step of radiolabeling and the third set for second-step reaction and/or sample prepar-

ation prior to HPLC purification. Product formulation is generally accomplished by the

last set of valves. Figure 2 displays the module with loaded cassette and reagents for

[18F]F-Gln. Synthesis protocols are generated using the accompanying user-friendly

software that allows the user to string together all sequences for each operational step,

such as drying, radiolabeling and formulating, to one synthesis method. Figure 3 shows

the user interface for [18F]ISO-1 and Fig. 4 shows the user interface for [18F]F-Gln.

After synthesis, the reaction module is left for decay until the next day due to the con-

cern of radiation exposure. It is, however, possible to develop a cleaning protocol to

rinse off the residual radioactivity from the cassette and vials if the need for using the

module a second time arises.

Preconditioning is necessary for some cartridges before synthesis. Silica Plus Car-

tridges and Dry Sodium Sulfate Plus Long Cartridges were used as received. QMA Carb

Cartridges were treated with 10 mL 0.2 M K2CO3 solution followed by 20 mL of water.

C18 Plus and tC18 Cartridges were preconditioned with 1 mL ethanol, and followed by

rinse with 10 mL water. Alumina-N Plus Cartridges were treated with 10 mL water. All

conditioned cartridges were kept wet unless otherwise specified. Typically, it takes

thirty minutes to one hour to set up the module before receiving radioactivity to start

the radiosynthesis. After loading the appropriate labeling program, the “machine check”

sequence is performed to ensure module readiness including nitrogen pressure, com-

pressed air pressure, vacuum, heating, cooling, and movement of syringe and manifold

actuators. After kit installation, a “kit check” sequence is initiated to assure that the kit

has been properly installed. After reagents are loaded, the module is ready to receive

radioactivity for radiosynthesis.
Fig. 2 AllinOne synthesis module with mounted disposable kits and reagents for [18F]FGln



Fig. 3 AllinOne user software interface for one-vessel reaction ([18F]ISO-1)
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No-carrier-added [18F]F- was produced with the IBA cyclotron, Cyclone 18/9 (Louvain-

La-Neuve, Belgium), via the 18O (p, n) 18F reaction. The initial radiolabeling was performed

manually with a small amount radioactivity, 30–50 mCi, in a lead-shielded hot cell. When a

desirable radiolabeling condition was found, the procedures were programmed into the Alli-

nOne with the standard pressure and vacuum condition for drying [18F]F- and radiolabeling

temperature and duration adapted from the manual radiolabling. The program would be
Fig. 4 AllinOne user software interface for two-vessel reaction ([18F]F-Gln)
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tested initially without radioactivity by running it with intended reagents/solvents but with-

out fluoride source. Afterward, a small amount of starting radioactivity, 30–50 mCi, would

be used to test whether the parameters from manual labeling can be translated directly to

automated syntheses. Adjustment on the [18F]F- drying and the radiolabeling temperature

and duration are the two most common parameters that require optimization before the

radiolabeling processes are set.

The radiolabeling was performed in a 6 mL flat-bottom glass vial with silicone crimp-

cap with 2 tubing inlets. Therefore, for all the radiotracers that we adapted to the Alli-

nOne module, the volume of radiolabeling solvent has to be adjusted to be at least

0.6 mL. To concentrate the collected radiotracer fraction after semi-preparative HPLC

purification, C18 Sep-Pak cartridges were also incorporated into the automation process.

Some adjustment on the semi-prep HPLC condition was also needed to provide better

separation. These are the extent of optimization for [18F]fallypride and [18F]flubatine as

we currently only use these two radiotracers for pre-clinical studies. Additional

optimization details are described in Radiolabeling methods for [18F]F-Gln, [18F]ISO-1,

[18F]FTP, and [18F]FTT. The final reaction conditions are listed in Fig. 5. Generally speak-

ing, the precursor was heated in an aprotic solvent (DMSO, DMF or MeCN) with the cor-

responding phase-transfer reagent (K222 or 18-crown-6) for a predetermined time,

followed by deprotection step when required, and then quenched with the HPLC mobile

phase for purification.

Purification of all [18F]-labeled PET tracers included semi-preparative HPLC purifica-

tion and solid phase extraction. Unreacted [18F]F- was removed from the reaction mixture

via Alumina N Plus cartridge prior to loading to HPLC. HPLC purification was performed

with the built-in semi-preparative HPLC system equipped with a radioactivity detector,

Smartline UV detector 200 (Knauer, Berlin, Germany) and a HPLC pump P4.1.5 (Knauer,

Berlin, Germany). For semi-preparative HPLC purification columns, Luna® C18 column,

5 μm, 100 Å, 250 × 10 mm, was purchased from Phenomenex® (Torrance, USA); ZOR-

BAX StableBond SB-C18 column, 5 μm 80 Å, 100 × 9.4 mm, was purchased from Agilent

(Santa Clara, USA); SunFire C18 semi-preparative column, 5 μm, 250 × 10 mm, was pur-

chased from Waters (Milford, USA).

Analytical HPLC was performed with a Waters Alliance e2695 HPLC system (Milford,

USA) equipped with 2489 UV/VIS detector and photomultiplier scintillation radio-

detector (Eckert&Ziegler, Berlin Germany). Zorbax XDB-C18, 5 μm 80 Å 150 × 4.6 mm,

column (Agilent, Santa Clara, USA) was used for chemical and radiochemical purity test-

ing for [18F]ISO-1, [18F]FTP, [18F]FTT, [18F]flubatine and [18F]fallypride. Phenomenex

Chirex® 3126 (D)-penicillin column, 5 μm 250 × 4.6 mm (Santa Clara, USA)) and Sigma-

Aldrich Astec® CHIROBIOTIC™ T Chiral column, 5 μm 250 × 4.6 mm (St Louis, USA)

were used to confirm the enantiomeric of [18F]F-Gln. Residual solvent analysis was per-

formed using an Agilent gas chromatography (GC) system, 6890 or 7890 series. All GCs

and HPLCs were controlled with Waters Empower software.
Radiolabeling methods

The labeling methods are listed in Table 1. Most of the processes utilize a one-step re-

action, involving only one reaction vessel and a solid phase cartridge enrichment after

HPLC purification. Although the synthesis of [18F]flubatine is a two-step reaction, the



Fig. 5 Scheme for the radiosyntheses of the six radiotracers

Table 1 Labeling methods and yields

Name of the
radiotracer

Production
runs

Average yield
(d.c. %)

Specific activity mCi/
μmol@EOS

Run timea

(min)
Method

[18F]ISO-1 50 40 ± 5 1000–14,000 60 One vessel, one step,
HPLC, SPE

[18F]FTT 40 52 ± 3 1000–35,304 55 One vessel, one step,
HPLC, SPE

[18F]FTP 12 11 ± 2 2500–4680 60 One vessel, one step,
HPLC, SPE

[18F]Fallypride 3 68 ± 2 2380–3200 45 One vessel, one step,
HPLC, SPE

[18F]Flubatine 2 30 ± 1 3119–3220 60 One vessel, two steps,
HPLC, SPE

[18F]F-Gln 25 11 ± 3 >40b 98 Two vessels, two steps,
HPLC, SPE

aRun time was defined from start of synthesis (radioactivity measured on QMA after radioactivity delivery) to end of
synthesis (product formulated in final product vial), including drying [18F]F-, reaction, purification and formulation
Starting activity ranged from 30 mCi to 1500 mCi; with 30–50 mCi for the developmental runs and 500–1500 mCi for
clinical productions
bBased on the limit of quantitation from UV spectra

Li et al. EJNMMI Radiopharmacy and Chemistry  (2016) 1:15 Page 8 of 19
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process still only involves one reaction vessel. The synthesis of [18F]F-Gln represents an

exception. That is, the process is complicated, consisting of a two-step, two reaction-

vessel followed by a multiple purification procedure including HPLC purification of the

intermediate radiolabeled compound.
Synthesis of [18F]ISO-1

The one-pot synthesis of [18F]ISO-1 was performed in AllinOne module for animal and

clinical studies. [18F]F- in O-18 water was delivered from cyclotron to the module and

trapped by passing the solution through a preconditioned QMA Carb cartridge. Release

of [18F]F- from QMA Carb cartridge to the reaction vessel was achieved by eluting with

a 1 mL basic eluent (0.85 mL MeCN and 0.15 mL water containing 7 mg K222 and

2 mg K2CO3). Subsequent drying of the solution was conducted at 100 °C for 2 min

under vacuum. Anhydrous MeCN (1 mL) was then added to the reaction vessel for

azeotropic removal of residual water.

The literature reported method used microwave as the means for radiolabeling. The

Trasis module has two conventional heating chambers. Therefore, the radiolabeling method

has to been changed to thermo heating. This change also resulted in consistent radiolabel-

ing yields. The mesylate precursor (1.5 mg) in 0.8 mL DMSO was added into the reaction

vessel containing dried [18F]F-, K2CO3 and K222. The reaction mixture was heated at

100 °C for 10 min and then quenched with 3 mL mobile phase. The reaction mixture was

passed through an Al-N Plus cartridge before transfer to HPLC loop. The cartridge was

washed with an additional 3 mL of water. Unreacted [18F]F- was trapped on an Al-N Plus

cartridge and the crude mixture was purified by a semi-preparative HPLC with an Agilent

SB-C18 column (5 μm, 100 × 9.4 mm). The mobile phase was 39 % MeOH in 0.1 M

NH4HCO2 buffer at a flow rate of 5 mL/min. The desired product was eluted at approxi-

mately 25 min and the fraction (~10 mL) was collected in a 20 mL syringe and then di-

luted with water. The mixture was passed through a C18 Plus cartridge and rinsed with

10 mL water. The product was eluted with 1.5 mL ethanol and passed through a 0.2 μm

sterile Millex® FG filter into final product vial. The final formulation was prepared by add-

ing 15 mL saline into the final product vial.
Synthesis of [18F]FTT

[18F]FTT was synthesized on the AllinOne using a similar procedure as described for

[18F]ISO-1. The precursor that was initially reported was the mesylate precursor. It was

found that this precursor gave about 5 % decay-corrected yield. To increase the radiolabel-

ing yield, tosylate precursor was synthesized and radiolabeled. The average yield for tosylate

precursor is around 50 % and was then used for the later studies.

The precursor solution (0.8 mg in 0.8 ml DMF) was added to the dried [18F]F-/K222 in

the reaction vessel and the solution was heated at 105 °C for 10 min. After cooling to ambi-

ent temperature and removing unreacted [18F]F- with an Al-N Plus cartridge, the reaction

mixture was purified by a semi-preparative HPLC using an Agilent SB-C18 column (5 μm,

100 × 9.4 mm) and eluting with a mobile phase of 17 % MeCN in 20 mM NH4HCO3 solu-

tion at 5 ml/min flow rate. The purified product was reformulated in the final product vial

with saline containing ≤ 10 % ethanol.
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Synthesis of [18F]FTP

[18F]FTP was synthesized on the AllinOne using a similar procedure as [18F]ISO-1.

After drying of [18F]F-, a aliquot of DMSO was added to dry [18F]F-/K222/K2CO3 com-

plex prior to the addition of [18F]FTP precursor during the manual radiolabeling. The

same process cannot be achieved with an automated module. Therefore, another radi-

olabeling solvent, MeCN, was tested and gave satisfactory radiolabeling results. The

mesylate precursor (1.5 mg) was dissolved in 0.8 mL of MeCN. The radiolabeling was

carried out at 100 °C for 10 min. The semi-preparative HPLC purification was con-

ducted on Phenomenex Kinetex® 5 μm 150 × 10 mm column and mobile phase of 40 %

MeCN in 20 mM NH4HCO3 with flow rate of 5 mL/min. The collected product was

trapped on a tC18 Sep-Pak cartridge and the final product was formulated with ≤ 10 %

ethanol in saline.
Synthesis of [18F]fallypride

The synthesis of [18F]fallypride was adapted from literature with adjustment on the vol-

ume of radiolabeling solvent (Mukherjee et al., 2002). The overall process is similar to

the process used for [18F]ISO-1. The tosylated precursor (4 mg) in 1 mL MeCN was

added to the dried [18F]F-complex and heated at 100 °C for 10 min for radiolabeling.

After cooling to room temperature, the reaction mixture was quenched with mobile

phase and passed through an Al-N Plus cartridge to remove unreacted [18F]F- prior to

injection onto a semi-preparative HPLC for purification. Phenomenex Luna C18 (2)

column (5 μm, 250 × 10 mm) with mobile phase of 60 % MeCN/40 % 0.1 N NaHCO3

in water with a flow rate of 5 mL/min was used. The collected product was enriched

and rinsed in tC18 Sep-Pak cartridge and the final product was formulated with ≤10 %

ethanol in saline.
Synthesis of [18F]flubatine

The one-vessel, two-step synthesis of [18F]flubatine was achieved by displacing the qua-

ternary ammonium leaving group on the precursor with [18F]F- and then hydrolyzing

N-Boc group. The only optimization of this radiotracer to an automated process was to

adjust the volume of radiolabeling solvent. The solution of flubatine precursor (1 mg)

in DMSO (0.6 mL) was added to the dried [18F]F- complex and heated at 100 °C for

10 min. The reaction mixture was cooled to 80 °C, 1 N HCl solution (1 mL) was the

mixture heated at that temperature for 4 min to complete the deprotection step. After

cooling to 50 °C, the reaction mixture was neutralized with 1 N NaOH solution (1 mL)

and purified via semi-preparative HPLC with a Waters Sunfire column (5 μm, 250 ×

10 mm) and mobile phase of 4 % ethanol in PBS buffer at 5 mL/min flow rate was

used. The collected product was ready for use after sterile filtration.
Synthesis of [18F]F-Gln

The synthesis of [18F]F-Gln, following the route published by Qu et al. (Qu et al.,

2010), was developed on the Trasis AllinOne module as a two-vessel, two-step auto-

mated procedure. The first step was radiolabeling the precursor and the second step in-

volved removal of the three protecting groups. We employed the published

radiolabeling process but devoted some effort to find the optimal drying condition for
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[18F]F- , and [18F]F-Gln intermediate . In our experience, the dryness of these two steps

is essential to a successful radiolabeling as this is a moisture-sensitive reaction.

After eluting [18F]F- from the QMA cartridge, a mild phase-transfer reagent (18-

crown-6/KHCO3) was added and the [18F]F- was dried at 90 °C for 10 min. Precursor

(~10 mg) in 1 mL of MeCN was added into the first reaction vessel and the radiolabel-

ing was carried out at 85 °C for 20 min. The intermediate was purified by a semi-prep

HPLC system equipped with a Phenomenex Luna C18 column and mobile phase of

55 % MeCN in water at a flow rate of 5 mL/min. The intermediate was collected and

passed through a pre-conditioned C18 cartridge to concentrate the radioactivity, which

was then eluted with ether and passed through a dry cartridge to the second reaction

vessel for the deprotection step. One mL of TFA and 10 μL of anisole were added to

the reaction vessel followed by heating at 70 °C for 5 min. The TFA and anisole were

removed under nitrogen flow and vacuum. The crude product was dissolved in ether

and the mixture was trapped by passing through a Silica Plus cartridge. The final prod-

uct, [18F]F-Gln, was eluted with saline into the final product vial.
Quality control results

Limited quality control (QC) testing, including testing for pH, radiochemical and

chemical purity and identity by HPLC, and residual solvent testing by GC, were per-

formed on [18F]fallypride, [18F]flubatine, and [18F]F-GLN for preclinical studies. Other

radiotracers, such as [18F]ISO-1, [18F]FTT, [18F]FTP, had to pass a more rigorous set of

QC specifications prior to release for clinical research studies. We followed relevant

regulatory guidances, such as USP Chapter 823 and the FDA 21 CFR Part 212. The

tests included filter integrity test via bubble test, appearance via visual test, pH test via

pH paper, radionuclide identity and purity test via half-life and energy spectrum, radio-

chemical purity and identity test via analytical HPLC, chemical purity via HPLC, re-

sidual solvent analysis via GC, K222 spot test, pyrogenicity, and sterility. An example of

QC specifications is listed in Table 2.
Results and Discussion
Six 18F-labeled radiopharmaceuticals were produced with full automation on the Trasis

AllinOne module without any hardware modification. The processes gave good yields,

product purities and specific activities of the final products. The summary of labeling

method, decay-corrected radiochemical yield, specific activity at EOS and run time of

all six compounds is listed in Table 1.

The Trasis AllinOne module is an easy-to-use and versatile module with user-

friendly software and interface. Complicated labeling methods requiring two reaction

vessels and multiple Sep-Pak purifications can be conducted on it, such as [18F]FDopa

and [18F]F-Gln. There are multiple built-in radioactivity detectors in the AllinOne mod-

ule so one can track the trending of radioactivity over time. Radioactivity trending for

[18F]ISO-1 synthesis is shown in Fig. 6 and the radioactivity trending for [18F]F-Gln

synthesis is shown in Fig. 7. With simultaneous trending, it is easy to check the results

of parameter optimization during method development as well as identifying errors

when deviations occur during the synthesis. Other trend tracks, such as pressure,

temperature, and flow rate are also useful for method development.



Fig. 6 Radioactivity trending of [18F]ISO-1

Table 2 Specifications of ISO-1 for clinical studies

Test Acceptance criteria

Filter membrane integrity test Following manufacturer’s specification

pH 4.5–7.5

Appearance Clear, colorless, and particle-free

Strength (@EOS) 4–14 mCi/mL

Radionuclide identity (dose calibrator) 105.0 min to 115.0 min

Radionuclidic purity (annual test) ≥99.5 % of phantoms

Radiochemical purity ≥90 %

Radiochemical identity RT difference of radioactivity and reference peaks≤ 10 %

Drug mass ≤10 μg/ injection dose

Chemical impurity ≤10 μg/ injection dose

Kryptofix ≤50 μg/mL

Bacterial Endotoxin ≤175 EU/ total dose

Residue solvent: MeCN ≤0.41 mg/mL
(4.1 mg/day max)

Residue solvent: MeOH ≤3 mg/mL
(30 mg/day max)

Residue solvent: EtOH ≤100 mg/mL

Residue solvent: DMSO ≤5 mg/mL
(50 mg/day max)

Sterility (results after 14 days) Sterile (no visible growth)
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Fig. 7 Radioactivity trending of [18F]F-Gln
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For this module, the UV detector operates at a fixed wavelength of 254 nm.

Hence, the HPLC is good for production but not preferable for method develop-

ment. A tunable UV detector would improve the application range of the module.

In addition, replacing the flat-bottom reaction vessel with a conical or V-shape re-

action vessel would make it possible to reduce the solvent volume and improve the

module performance.
Fig. 8 A view of typical semi-preparative chromatogram of [18F]fubatine



Fig. 9 A view of typical semi-preparative chromatogram of [18F]fallypride
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Another challenge of the module is the limitation on the syringe used for HPLC

collection. The collected HPLC fraction can only be diluted with water into a

20 mL syringe before loading the sample on a C18 cartridge. Therefore, methods

for semi-preparative HPLC must be well developed to make sure the trapping on

the cartridge is sufficient. The semi-preparative HPLC method of [18F]flubatine has

been optimized from literature, with the chromatogram shown in Fig. 8; semi-prep
Fig. 10 A view of typical semi-preparative chromatogram of [18F]FTT



Fig. 11 A view of typical semi-preparative chromatogram of [18F]FTP
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HPLC methods for [18F]ISO-1, [18F]FTT, [18F]FTP, and [18F]fallypride have also

been developed to incorporate solid phase purification and give good mass purity,

as the semi-prep chromatograms showed in Figs. 9, 10, 11 and 12. Figure 13 shows

a typical semi-preparative HPLC chromatography of the purification of [18F]ISO-1.

The typical radiochemical purities for all radiotracers are greater than 97 %, except
Fig. 12 A view of typical semi-preparative chromatogram of [18F]F-Gln



Fig. 13 A view of typical semi-preparative chromatogram of [18F]ISO-1
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for [18F]F-Gln (purity ≥ 90 %). A typical [18F]ISO-1 analytical HPLC chromatogram

is shown in Fig. 14, demonstrating the high radiochemical and chemical purities.

In addition to semi-prep HPLC method development for the module, Sep-Pak purifi-

cation has been also done for radiotracer production. The synthesis and purification of

[18F]F-Gln is more complicated than the other radiotracers described in this study, re-

quiring more than the typical semi-preparative purification and Sep-Pak isolation/elu-

tion. Two additional solid phase purifications were introduced in the process. After the

initial radiolabeling step and prior to deprotection, the intermediate was isolated and

eluted by ether and passage through a Dry Sodium Sulfate Plus Long cartridge to
Fig. 14 A view of typical analytical chromatogram of [18F]ISO-1



Fig. 15 Analytical Radio-HPLC chromatography of [18F]F-Gln with different chiral columns
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remove residual moisture. Compared to ethanol, ether has a lower boiling point and is

easily removed by evaporation. In contrast to the literature method in which the direct

formulation was done in the second reaction vessel, further purification of the final

[18F]F-Gln product was enhanced by introducing a silica cartridge to purify the reaction

mixture after deprotection. The final product was trapped on a Silica cartridge to allow

for the removal of anisole, TFA and other chemical impurities. The product was eluted

with ether and the ether residue was then removed by nitrogen flow under vacuum.

The final product was formulated with normal saline or phosphate buffered saline.

Typical [18F]F-Gln analytical HPLC chromatograms with two different conditions are

shown in Fig. 15. It was found that the method with Astec CHIROBIOTIC™ T Chiral

HPLC column can be used for both radiochemical purity and enantiomer purity. It pro-

vides both radiochemical purity and enantiomeric purity with shorter run time than the

literature method (Qu et al., 2010). Furthermore, this method works well for metabol-

ism studies for [18F]F-Gln.
Conclusion
We have conducted the fully automated synthesis of six 18F-labeled PET tracers on the

AllinOne synthesis module without hardware reconfiguration. All tracers were pro-

duced in radiochemical yield and with a run time compatible with that required for

routine production for PET imaging studies. Three radiotracers are currently being

used in clinical research studies using the methods described in this report.
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