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Abstract 

Background: We aimed to develop a publicly shared computational physiologically 
based pharmacokinetic (PBPK) model to reliably simulate and analyze radiopharma‑
ceutical therapies (RPTs), including probing of hot‑cold ligand competitions as well 
as alternative injection scenarios and drug designs, towards optimal therapies.

Results: To handle the complexity of PBPK models (over 150 differential equations), 
a scalable modeling notation called the “reaction graph” is introduced, enabling easy 
inclusion of various interactions. We refer to this as physiologically based radiopharma‑
cokinetic (PBRPK) modeling, fine‑tuned specifically for radiopharmaceuticals. As three 
important applications, we used our PBRPK model to (1) study the effect of competi‑
tion between hot and cold species on delivered doses to tumors and organs at risk. In 
addition, (2) we evaluated an alternative paradigm of utilizing multi‑bolus injections 
in RPTs instead of prevalent single injections. Finally, (3) we used PBRPK modeling 
to study the impact of varying albumin‑binding affinities by ligands, and the implica‑
tions for RPTs. We found that competition between labeled and unlabeled ligands can 
lead to non‑linear relations between injected activity and the delivered dose to a par‑
ticular organ, in the sense that doubling the injected activity does not necessarily 
result in a doubled dose delivered to a particular organ (a false intuition from external 
beam radiotherapy). In addition, we observed that fractionating injections can lead 
to a higher payload of dose delivery to organs, though not a differential dose deliv‑
ery to the tumor. By contrast, we found out that increased albumin‑binding affinities 
of the injected ligands can lead to such a differential effect in delivering more doses 
to tumors, and this can be attributed to several factors that PBRPK modeling allows us 
to probe.

Conclusions: Advanced computational PBRPK modeling enables simulation and anal‑
ysis of a variety of intervention and drug design scenarios, towards more optimal 
delivery of RPTs.
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Introduction
Radiopharmaceutical therapies (RPTs) involve the injection of molecules (ligands) 
labeled with radioisotopes to target specific binding sites with increased expression 
in tumors (Lever 2002; National Research Council 2007; Banerjee et al. 2015; Morris 
et al. 2021). The goal is to use radiopharmaceuticals to cause cellular damage instead 
of tracer amounts that do not perturb biological systems (Sgouros et al. 2020; Salih 
et  al. 2022; Sgouros 2019; Lindsley et  al. 2022; Sgouros 2023; Pallares and Abergel 
2022). This vastly emerging paradigm has led to significant excitement, while there is 
a significant number of phenomena that need to be better understood towards opti-
mal, personalized, and precision RPTs (Siebinga et  al. 2022, 2021; Zaid et  al. 2021; 
Rahmim et al. 2022; Kletting et al. 2016; Gospavic et al. 2016; Hardiansyah et al. 2016; 
Maaß et al. 2016).

In RPTs, dose delivery to the tumor and organs at risk (OARs) depends on a wide array 
of factors, e.g. the blood circulation in the cardiovascular system of the body (English 
et  al. 2022). It is a challenging task to predict absorbed dose by tumors and OARs by 
solely knowing the injection parameters (i.e. injected activity and specific activity) (Divgi 
et al. 2021), and as a result, absorbed doses can span an order-of-magnitude (Del Prete 
et al. 2019; Violet et al. 2019), and as a result, patients are commonly undertreated. To 
provide a better understanding, physiologically based pharmacokinetics models fine-
tuned to radiopharmaceuticals have been proposed (Siebinga et al. 2022).

There have been previous attempts in modeling the kinetics of pharmaceuticals, 
among which are ODE-based models (Zhang et al. 2022; Strand et al. 1993), PDE based 
models (Kiani Shahvandi et  al. 2022), stochastic models (Convertino et  al. 2018), etc. 
Many of these models were also fine-tuned to study the kinetics of radiopharmaceuticals 
(Kletting et  al. 2009, 2012; Pfeifer et  al. 2013; Hardiansyah et  al. 2016; Gospavic et  al. 
2016; Hardiansyah et al. 2016; Maaß et al. 2016; Begum et al. 2018; Rinscheid et al. 2019; 
Bartelink et al. 2022). For instance, PBPK models utilize ordinary differential equations 
(ODE) to simulate the kinetics of pharmaceuticals/radiopharmaceuticals in the body 
right after the injection. These models include major organs in the body and treat their 
structures as different compartments while the flow of species from one compartment to 
the other is governed by ODEs.

PBPK model structures have been commonly designed in a way that can challenge 
scalability. To be more specific, previous models utilized the concept of “parallel” tracks 
to keep track of different species in the body; e.g. labeled and unlabeled radiopharma-
ceuticals. For instance, adding the concept of albumin interaction to the model (a new 
attempt pursued in our work) would require adding several other “parallel tracks” to the 
model which can make it very hard and complicated to implement. Lack of shared mod-
els in a standardized format, e.g., in systems biology markup language (SBML), can also 
challenge reproducible research into the kinetics of radiopharmaceuticals.

In this work, we provide a publicly-shared upgraded design of PBPK modeling that 
is easily scalable. We studied the effect of the following factors on the absorbed dose 
by tumor and OARs: the competition between labeled and unlabeled ligands in binding 



Page 3 of 17Fele‑Paranj et al. EJNMMI Radiopharmacy and Chemistry  (2024) 9:6 

to the binding sites, multi-bolus injection instead of a single bolus injection, and the 
strength of ligand-albumin affinity.

Methods
We used the PBPK model structure developed by Kletting et  al. (2016) as a base-
line model for the kinetics of 177Lu-PSMA. This involves a compartmental modeling 
approach used to simulate the distribution of radiopharmaceuticals among different 
organs in the body. Each organ is treated as a collection of compartments, each associ-
ated with a different spacial structure of the organs (i.e. vascular structure, interstitial 
space, PSMA binding sites, and the internal space of cells). The interchange of mate-
rial between these compartments is governed by ordinary differential equations (ODE). 
However, since there are two types of pharmaceuticals circulating the body, labeled 
and unlabeled, two parallel tracks need to be implemented to take these two types into 
account (see the Additional file 1: supplementary file subsections S.1 and S.2 for more 
details about the model).

We expanded the model and made it more scalable to enable more detailed interac-
tions of the radiopharmaceuticals with other species (i.e. albumin). We changed the defi-
nition of a compartment (as used in Kletting et al. (2016)) from a container containing 
only one variable to a container that can contain several variables called species, while 
species have their own interaction with each other (through the reaction graph as dis-
cussed in Additional file 1). This modeling structure eliminates the need for the “paral-
lel” track to take the different pharmaceutical types into account. The concept of parallel 
tracks is not scalable if we were to explore the effect of albumin binding with more bio-
logical details (for instance to consider the fact that albumin can leak to the interstitial 
space of a tumor but not to the interstitial space of the OARs).

We implemented the model in MATLAB Simbiology  and utilized population-meas-
ured values (see the Additional file  1: supplementary file section S.4) for the model 
parameters (as used in Kletting et al. 2016). Different variations of some parameters (e.g. 
different tumor volumes, tumor receptor densities, etc.) constitute the “virtual patients”. 
The data published in Kletting et al. (2016) were used for model validation. Implemen-
tation of this work is shared publicly in SBML format to ease model reproduction (see 
model sharing in Sect. ).

The PBRPK model is used to calculate the time activity curves for different organs 
under different simulation settings (as discussed below). Subsequently, we used the 
dosimetry methods, as discussed in Kletting et al. (2016) and section S.3 in the Addi-
tional file 1: supplementary file, to calculate the absorbed doses for further analysis.

Hot and cold interaction

We injected virtual patients (differing in the tumor receptor densities and tumor vol-
umes) with different combinations of labeled and unlabeled ligands (see Table 1) while 
measuring the dose delivered to the tumor and OAR.

Furthermore, to be able to compare the effect of different combinations of labeled and 
unlabeled radiopharmaceuticals under different patient settings (i.e. different tumor vol-
ume and tumor receptor density), we developed the concept of twist, which is a geo-
metrical measure of the tiltedness of the iso-dose curves (see Fig.  1). In fact, twist is 



Page 4 of 17Fele‑Paranj et al. EJNMMI Radiopharmacy and Chemistry  (2024) 9:6

measuring the angle between a straight line fitted to each iso-dose curve with the 
straight line fitted to the iso-dose curve corresponding to the lowest dose value.

Injection profile

As any multi-bolus injections (with the same injected and specific activity) can be char-
acterized by two parameters, number of injections and time between each injection), we 
performed a parameter sweep on the Cartesian product of the different values for each 
of them, while keeping the total injected labeled and unlabeled ligands to be 10 nmol and 
100 nmol respectively. It is worth noting that, for instance, a fractionated injection con-
sisting of 5 injections with 100 minutes between each, is assumed to be all administrated 
in a single therapy session. As such, in this work, instead of injecting the entire portion 
at once, we explored the effects of injections in smaller portions, as characterized by 
the parameters “time between injections” and “number of injections” (see Table 2). Fur-
thermore, to consider patient heterogeneities, we tested different injection strategies on 
virtual patients with different tumor receptor densities and tumor volumes of reasonable 
values (see Table 2).

To quantify the effect of multi-bolus injection in contrast to the single bolus injection, 
we found the injection strategy yielding the highest delivered dose to each organ and 
tumor, and then calculated the relative change in dose compared to the bolus injection 
(we call it the maximum relative dose change or MRDC). Note that since dose and TIA 
are different up to a multiplicative constant, the maximum relative dose change is the 
same as the maximum relative TIA change. In short, MRDC can be defined as:

MRDC =
Dosei(n

∗, τ ∗)− Dosei(0, 0)

Dosei(0, 0)
,

Table 1 The range of parameter values on injected hot, injected cold, tumor receptor density, and 
tumor volume to study the competition between hot and cold species

Parameter Range of values Unit

Injected hot amount 10 linear samples from the interval [5,100] nmol

Injected cold amount 10 linear samples from the interval [25,800] nmol

Tumor receptor density 10 linear samples from the interval [10,890] nmol/lit

Tumor volume 10 linear samples from the interval [40,2100] ml

Table 2 The range of parameter values utilized for evaluating the effect of injection profile (multi‑
bolus injection)

Parameter Range of values Unit

Number of injections {1,2,3,4,5,6,7,8,9,10} Dimensionless

Time between injections {10,50,100,200,300,400,500,750,1000} min

Tumor receptor density 10 linear samples from the interval [43,342] nmol/lit

Tumor volume 10 linear samples from the interval [40,2100] ml

Injection coefficient {1,2,3,4,5,6} Dimensionless
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in which Dosei(n, τ ) is the dose delivered to organ i as a function of number of injections 
(n indexed from 0 upwards) and time between injections ( τ ), n∗ and τ ∗ are the values 
which maximizes the dose to organ i. Note that Dosei(0, 0) means the dose delivered to 
organ i under a single bolus injection.

Albumin

For this study, we performed a parameter sweep on the different values of Kalb
D  , logarith-

mically sampled from the range [5, 106 ] nmol/lit (see Table 3). For each of those simula-
tions, we injected the patients with 10 nmol hot ligands and 100 nmol cold ligands.

For each value of KD , we calculated the blood residence time (time-integrated activity 
in the vein compartment divided by the injected activity) as well as the delivered dose to 
the organs under study. The blood residence time (BRT) can be written as

in which Avein(τ ) is the activity in the vein compartment which is simply 
Avein(τ ) = �physHvein with Hvein representing the hot ligands in the vein, and A0 is the 
injected activity that is simply A0 = �physH0 with H0 representing the injected hot 
amount.

To reflect the seek for the optimal therapy according to the main objective (i.e. increase 
the absorbed dose to the tumor while decreasing the delivered dose to OAR), we calcu-
late a quantity called ”enhancement factor“ using the following formula

in which EF is the enhancement factor, TumorDose(Kalb
D ) represented the tumor 

arborbed dose as a function of Kalb
D  , and similarly OARDose(Kalb

D ) represents the dose to 
organ at risk. Intuitively speaking, EF quantifies the effectiveness of albumin binding in 
delivering differential dose to tumor (relative to OAR). For instance, for a given value of 
Kalb
D  , EF = 4 means that enabling albumin binding with the given Kalb

D  , delivered 4 times 
more dose to the tumor relative to OAR, compared to the situation where albumin bind-
ing was off (i.e. Kalb

D = ∞).

Results
Our scalable model implementation in Simbiology Matlab has a run time of 0.15± 0.2 
seconds to generate the time activity curves for more than 18 organs for about 50,000 
minutes. For instance, a parameter sweep consisting of 1000 model runs, would take 
somewhere around 150 seconds to complete. However, this can be accelerated with the 

BRT =

tend
0 Avein(τ )dτ

A0

EF(Kalb
D ) =

TumorDose(Kalb
D )/OrganDose(Kalb

D )

TumorDose(∞)/OrganDose(∞)
,

Table 3 The range of parameter values used to study the effect of albumin binding on the kinetics 
of radiopharmaceuticals

Parameter Range of values Unit

K
alb
D

20 logarithmically spaced values from [5, 105] nmol/lit
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parallel processing utility in Matlab and the run time can be reduced to about 90 sec-
onds. The implemented model is shared in SBML format and can be found here (link to 
the GitHub repository). In what follows, we show the results of applying our model to 
the three above-mentioned studies, with further elaborations in the discussion section.

Hot and cold interaction

In Fig. 1 we observe that for a fixed amount of injected activity (i.e. fixed hot amount), 
increasing the number of cold molecules (i.e. decreasing specific activities, and moving 
up on the dashed line in Fig. 1), will result in lower delivered doses to the tumor. Fur-
thermore, the figure shows that moving from the iso-dose curve corresponding to the 
lowest dose (the leftmost) to the iso-dose curve with the highest dose value (the right-
most), the curves become more horizontal.

Figures 2 and  3 show the effects of varying tumor receptor densities and tumor vol-
umes on the tumor absorbed doses, respectively. It is observed that by increasing the 
tumor receptor density, the average delivered dose to the tumor increases. Furthermore, 
in doing so, the iso-dose curves become less tilted (horizontal) as we move from the 
iso-dose curve with the lowest dose value to the one with the highest dose value. This 
translates to the decreasing “twist” value as shown in Fig. 4. By contrast, when changing 
volumes, as shown in Fig. 5, this twist is less for tumors, but more for kidney and salivary 
glands (due to tumor sink effect). Overall, changing tumor receptors and volumes depict 
notable patterns. 

Injection profile

Figures 6 and 7 shows the effect of multi-bolus injection on the delivered dose to the 
tumor, under different scenarios in which we consider different tumor volumes and 
tumor receptor densities. These figures show that under a fixed tumor volume or 
tumor receptor density, more fractionation (higher number of injections or higher 
time between injections) translates to a higher delivered dose to the tumor. Also, Fig. 6 
especially shows the trend that with higher tumor receptor density the dose to tumor 
increases systematically (look at the color bar).

Fig. 1 Dependence of the delivered dose to organs on the injected hot amount and injected cold 
amount. Moving from the left side of each plot to the right side, we observe that the iso‑dose lines get 
tilted, suggesting more competition between hot and cold species. In addition, the two dots on the 20 Gy 
iso‑dose curve reveal that one can achieve the same absorbed dose in the tumor by lower injected activity if 
accompanied by lower cold amount (i.e. higher specific activity)
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Fig. 2 The effect of the tumor receptor density on the competition between hot and cold species for 20 ml 
for the tumor volume

Fig. 3 The effect of the tumor volume on the competition between hot and cold species. The value of tumor 
receptor density is set to 40 nmol/lit for this simulation
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However, these trends can be captured more clearly by calculating MRDC. For 
instance Fig. 8 shows that by fractionating the injection, the relative delivered dose to the 
tumor (compared to the baseline bolus injection) decreases with higher tumor receptor 
density.

Fig. 4 The effect of tumor receptor density on the competition degree (i.e. twist) between hot and cold 
species (with 20 ml for the tumor volume). Higher tumor receptor leads to less competition (thus less twist) 
in the tumor, while the competition level remains the same in kidney and salivary glands

Fig. 5 The effect of the tumor volume on the competition degree (i.e. twist) between hot and cold species 
(tumor receptor density set to 40 nmol/lit). Higher tumor volume does not alter competition in tumor as 
much as Fig. 4 (changing tumor receptor density), but more greatly impacts competition in kidney and 
salivary glands due to the tumor sink effect
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Fig. 6 Effect of receptor density on the effectiveness of multi‑bolus injection. These plots suggest that 
receptor density plays the main role in increasing the uptake due to injection fractionation

Fig. 7 Effect of tumor volume on the effectiveness of multi‑bolus injection. The value of tumor receptor 
density is set to 40 nmol/lit for these plots
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Fig. 8 Effect of receptor density on injection fractionation (MRDC). We can observe that at low receptor 
densities, the effect of fractionation is more significant

Fig. 9 The effect of albumin affinity on the blood residence time of activity. We can observe that the 
increased albumin affinity (lower KD ) will increase the blood residence time
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Fig. 10 Dependence of dose on the dissociation constant of the albumin‑ligand reaction. With higher 
albumin affinity (i.e. lower values of the dissociation constant), we observe that the dose to OAR and tumor 
both start to increase (as one moves to the left of the solid line) which is due to the increased residence time 
of the radiopharmaceuticals. However, for further lower dissociation value (beyond the dotted‑dashed line), 
the dose to OAR starts decreasing while the dose to tumor still increases, attributed to leakage of albumin 
and albumin‑bound ligands in the interstitial space of the tumor (see discussion). Finally, with much lower 
values of Kalb

D
 (beyond the dashed line), all doses decrease related to the fact that with very strong affinities, 

there will be limited binding to receptors

Fig. 11 Dependence of enhancement factor on the dissociation rate of albumin‑ligand interaction. Lower 
values of Kalb

D
 lead to higher enhancement ratios, meaning that higher albumin affinity will help in delivering 

more dose to the tumor and sparing (to some degree) the OAR
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Albumin

Figure 9 shows that the blood residence time is increased with a higher affinity of the 
radiopharmaceutical to the albumin. Furthermore, Fig. 10 represents the absorbed dose 
by tumor and OARs as a function of dissociation constant. The vertical lines in this fig-
ure show different regions of the plot in which dose to tumor and OAR exhibit different 
behaviors in terms of decreases and increases (we discuss these regions in the figure cap-
tion and Discussion section).

Moreover, Fig. 11 depicts the enhancement factor for tumor dose with respect to sali-
vary glands and kidney. It is seen that values increasingly greater than one are seen for 
the enhancement factor for increasing binding affinities to albumin. Overall, this com-
putational framework enables the gaining of more insights into radiopharmaceutical 
development considerations.

Discussion
Model limitations

In general, PBPK models have many parameters and this can be both its strength and 
weakness (see Sager et al. 2015; Tan et al. 2018; Quijano-Mateos 2022; Khalil and Läer 
2011 for more detailed discussions). It can be considered a strength because given 
enough accurate measurements of the parameters, the model can predict the behavior 
of complex interconnected systems. However, when dealing with few measured parame-
ters, using PBPK models for accurate predictions requires significant care. In the present 
work, we focus on behavioral analysis of these models for a range of realistic parameters. 
Future efforts on personalization of PBPK models and digital twinning of patients (Rah-
mim et al. 2022) need to address the above-mentioned challenge. In this paper, we rep-
resented a scalable PBPK model structure and performed numerical explorations to find 
possible answers for questions of clinical importance to demonstrate the capabilities of 
PBPK models, also aiming to enable the community to use computational tools towards 
understanding and optimization of RPTs.

As discussed in the supplementary file, the reaction between albumin and ligand is 
assumed to be one-to-one (meaning only one ligand can bind to the albumin). This is 
not exactly true. The ligand can bind to different albumin binding sites thus having a 
larger-than-one stoichiometric coefficient, which is assumed to be 1 on our model. 
This assumption can be made more accurate following more investigations in this area. 
Furthermore, we have assumed that due to the larger size of albumin molecules, the 
albumin-ligand complex will not be able to bind to the binding sites. Also, we made the 
assumption that the albumin leakage to the tumor interstitial space is due to the porous 
structure of the vascular wall, thus its permeability coefficient in entering the intersti-
tial space does not scale with its molecular weight, and in fact, we assumed the values 
are the same as the permeability coefficient of ligands (this assumption is worth further 
investigating; in the present work, it helps us obtain an upper bound for the effectiveness 
of albumin binding, which will help in designing future studies).

Our PBRPK model presented here reflects the kinetics of radiopharmaceuticals. 
However, making accurate statements about the number of cells killed because of a 
given activity profile requires yet another model that takes radio-biology into account. 
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However, in this work, to limit the number of possible sources of errors to the conclu-
sions, we did not include any radiobiological modeling. Needless to say, there are sig-
nificant efforts towards reliable and accurate computational and mathematical models 
to describe the survival rate of cells in RPTs (EANM Radiobiology Working Group 2023) 
(which can be quite distinct from external beam radiotherapy), and our future investiga-
tions will include such models. In other words, while the present work focuses on phar-
macokinetics (what the body does to a drug), pharmacodynamics (what the drug does to 
the body) which in our case involves radiation biology is an area of upcoming investiga-
tion, and upgrade to our PBRPK model.

Hot and cold interaction

Considering two red dots on the iso-dose curve of the tumor in Fig.  1, we observe 
that despite the fact that they have the same delivered dose to the tumor, they are not 
achieved through the same injected activity, and one has almost half the injected activity 
of the other one; in other words, specific activities can play a significant role in delivered 
doses, which is a key consideration. Meanwhile, Figs. 4 and 5 suggest that the iso-dose 
curves become less parallel with respect to the very first iso-dose curve as we decrease 
tumor receptor densities especially, indicating significant impact in delivery of doses 
with varying injected radioactivities and specific activities.

Since smaller amounts of radioactive injection (i.e. low hot and cold amounts) fall 
on the very first iso-dose curve, and it has a certain relation between the hot and cold 
amount that results in the corresponding dose, we decided to compare other iso-dose 
curves with this particular one, given its almost constant behavior in all of the plots (i.e. 
can be thought of as a common ground between the figures). Obviously, we could select 
other common references between plots to perform the measurements, e.g. the vertical 
y-axis. However, a vertical iso-dose curve indicates that there is no competition between 
hot and cold species in binding to the receptors: a scenario where this can be achieved is 
when we have an infinite number of receptors, thus there is no limited common binding 
site for hot and cold. However, since this scenario is somehow hypothetical, the y-axis is 
not an appropriate reference for these measurements.

Lower twist values for the iso-dose curves for a given value of tumor receptor den-
sity and tumor volume indicate that the iso-dose curves associated with the high dose 
amount behave similarly to small injections. Lower twist value for a given hot-cold plot 
thus indicate lower receptor saturations.

Comparing Figs. 4 with 5 reveals that increasing the tumor receptor density decreases 
the receptor saturation in tumors but not in OAR. However, increasing the tumor vol-
ume will decrease the saturation in OAR as well. This is related to the tumor sink effect 
(Beauregard et al. 2012) wherein higher tumor volumes will inhibit uptake in OARs, and 
we show that this can result in decreased OAR saturation as well.

Injection profile

A core observation in this work is that the delivered dose to tumors and OARs increases 
as we fractionate the injection more (i.e. injecting in smaller portions over time, rela-
tive to prevalent single bolus injections). The increasing trend in the effectiveness of 
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multi-bolus injections as tumor receptor densities decrease (Fig. 8) is related to the fact 
that higher fractionation will help towards less saturation in the receptors, and thus 
more free ligands in the body are susceptible to clearance through the kidneys.

Albumin

In utilizing the albumin kinetics for radiopharmaceutical delivery, three factors inter-
act with each other, contributing to the 3 colored regions in Fig. 10 of different pat-
terns of increase or decrease in tumor vs. OAR doses:

• Kidney clearance: Albumin is not cleared through the kidney, and as such, albu-
min-bound ligands will also not be removed from the body and will stay longer 
in the blood. This will result in higher blood residence time (see Fig. 9). This can 
explain the blue region in Fig. 10.

• Porous vascular structure in the tumor microenvironment: Due to the mechani-
cally distorted and porous structure of the tumor vasculature, albumin (and also 
albumin-bound ligands) can leak into the interstitial space of the tumor but not 
the OAR. This can result in a higher dose to tumors but not OARs, resulting in the 
green region in Fig. 10.

• The large size of albumin protein: Albumin is a very large molecule (about 70 
kD) compared to radiopharmaceuticals (about 1 kD). Thus the albumin-bound 
ligands will not be able to bind to the PSMA binding sites. This can result in a 
lower delivered dose to the tumors and OARs, resulting in the orange region (left-
most) in Fig. 10.

As context for the present effort, we note that following successful exploitation of 
albumin binding mechanism for pharmaceuticals to enhance the therapeutic index 
(Lee and Wu 2015; Fan et  al. 2022), there has been an increased motivation in the 
nuclear medicine community to study the effect of albumin binding in radiopharma-
ceuticals (Boinapally et al. 2023; Szücs et al. 2023; Busslinger et al. 2023; Brandt et al. 
2022; Alati et al. 2023). However, to our best knowledge, there have been no computa-
tional models to study phenomena in this domain, motivating our design of a scalable 
PBRPK model and computational studies in albumin binding.

Conclusion
In this work, we have extended PBPK modeling and made it more suitable for simu-
lating complicated kinetics of radiopharmaceuticals. The new PBRPK model is pub-
licly shared and easy to implement computationally. It is easy to expand the model 
and to include ligand-protein interactions. We implemented the model in MATLAB 
Simbiology, and shared the SBML implementation with the community. Using the 
new PBRPK model, we studied the interactions between hot and cold ligands and 
found out that cold ligands can saturate the receptors and leave limited binding sites 
available for the hot ligands, demonstrating that specific activities of injected radi-
opharmaceuticals can make a crucial difference. In addition, we studied the effect of 
multi-bolus injection on the efficiency of dose delivery to tumors and OAR. We found 
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that fractionating the injection can lead to a higher payload (i.e. higher delivered 
doses per unit injected activity), though a differential advantage was not observed (i.e. 
no further sparing of OARs with respect to tumor doses). Moreover, we found that 
higher affinity of the ligands to albumin can lead to significant differential advantages 
in delivering doses to tumors, and provided more insights into phenomena involved 
towards optimal radiopharmaceutical therapies.

Model sharing
The latest version of the PBPK model in SBML format can be found in the following repository: 
https:// github. com/ alife le/ Compu tatio nal- Physi cs/ tree/ main/ PSMA- PBPK- Model- Matlab

The various parameters used in the model are also provided as Additional file 1: sup-
plemental material.

Supplementary Information
The online version contains supplementary material available at https:// doi. org/ 10. 1186/ s41181‑ 023‑ 00236‑w.

Additional file 1. Detailed overview of the structure of the PBPK model, and tabulated parameter values used to run 
the simulations.
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