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Background
Myocardial Perfusion Imaging (MPI) is a non-invasive procedure to provide a sensitive 
means for detection, localization, and risk satisfaction of ischemic heart disease, assess-
ment of left ventricular function, and myocardial viability. MPI is one of the most com-
monly performed investigations in nuclear medicine studies. The most widely used MPI 
is single-photon emission computed tomography (SPECT), usually performed using 
single-photon radiopharmaceuticals, such as 99mTc-MIBI, 99mTc-tetrofosmin, and 201Tl-
chloride (Sachdev et  al. 1990; Kelly et  al. 1993; Maddahi et  al. 1994). Unlike SPECT, 

Abstract 

Background:  Myocardial perfusion imaging (MPI) is one of the most commonly 
performed investigations in nuclear medicine procedures. Due to the longer half-life of 
the emerging positron emitter copper-64 and its availability from low energy cyclotron, 
together with its well-known coordination chemistry, we have synthesized 64Cu-
labeled NOTA- and 64Cu-NOTAM-rhodamine conjugates as potential cardiac imaging 
agents using PET.

Results:  64Cu-NOTA- and 64Cu-NOTAM-rhodamine conjugates were synthesized using 
a traightforward and one-step simple reaction. Radiochemical yields were greater than 
97% (decay corrected), with a total synthesis time of less than 25 min. Radiochemical 
purities were always greater than 98% as assessed by TLC and HPLC. These synthetic 
approaches hold considerable promise as a simple method for 64Cu-rhodamine con-
jugates synthesis, with high radiochemical yield and purity. Biodistribution studies in 
normal Fischer rats at 60 min post-injection, demonstrated significant heart uptake and 
a good biodistribution profile for both the radioconjugates. However, the 64Cu-NOTAM-
rhodamine conjugate has shown more heart uptake (~ 10% ID/g) over the 64Cu-NOTA-
rhodamine conjugate (5.6% ID/g).

Conclusions:  These results demonstrate that these radioconjugates may be useful 
probes for the PET evaluation of MPI.

Keywords:  Copper-64, Positron emission tomography, Rhodamine, Myocardial 
perfusion imaging, Radiopharmaceuticals

Open Access

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

RESEARCH ARTICLE

AlHokbany et al. 
EJNMMI Radiopharmacy and Chemistry            (2022) 7:19  
https://doi.org/10.1186/s41181-022-00171-2

EJNMMI Radiopharmacy
                and Chemistry

*Correspondence:   
nhokbany@ksu.edu.sa

1 Chemistry Department, Science 
College, King Saud University, 
P.O. Box 22452, Riyadh 11495, 
Kingdom of Saudi Arabia
2 College of Medicine, King 
Saud University, P.O. Box 22452, 
Riyadh 11495, Kingdom of Saudi 
Arabia
3 Cyclotron 
and Radiopharmaceuticals 
Department, King Faisal 
Specialist Hospital and Research 
Centre, P.O. Box 3354, 
Riyadh 11211, Kingdom of Saudi 
Arabia

http://orcid.org/0000-0002-2304-4693
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s41181-022-00171-2&domain=pdf


Page 2 of 15AlHokbany et al. EJNMMI Radiopharmacy and Chemistry            (2022) 7:19 

positron emission tomography (PET) imaging offers several evident advantages of imag-
ing in MPI application including higher spatial resolution, better sensitivity, and an 
improved attenuation correction. Currently, the used PET radiotracers for MPI studies 
are [13 N]NH3, [15O]H2O, and 82Rb (Schelbert et al. 1981; Selwyn et al. 1982; Bergmann 
et al. 1984). The short half-lives of PET tracers, such as 15O (2 min) and 13 N (10 min), 
and the requirement for an on-site cyclotron for manufacturing these tracers are the 
main restrictions for their usage. Additionally, 82Sr/82Rb generator is broadly available 
but it is not an ultimate PET radiotracer because of its high recurring price, very short 
half-life combined with long positron range that lowers the image resolution. When 
compared with other PET tracers, fluorine-18 (18F) offers suitable nuclear and chemi-
cal properties for PET imaging (Okarvi 2001; Varagnolo et al. 2000). Therefore, various 
18F-labeled radiopharmaceuticals for MPI have been prepared and evaluated and some 
of these new agents have shown better image quality and a better association to true 
myocardial blood flow than 99mTc-MIBI (Marshall et al. 2004; Madar et al. 2006; Yu et al. 
2007; Huisman et al. 2008; Shoup et al. 2011).

It has been shown that the rhodamine dyes are accumulated in mitochondria and 
take around 30% of the myocardial intracellular volume in the heart (Kronauge et  al. 
1992). Thus, numerous 18F-rhodamines analogs as potential MPI agents were devel-
oped recently (Heinrich et al. 2010; Gottumukkala et al. 2010; Bartholoma et al. 2012). 
In particular, 18F-labeled rhodamine B diethylene glycol ester ([18F]RhoBDEGF) has 
provided an excellent image quality and might be a potential PET tracer for MPI stud-
ies (Storey et  al. 1993). Recently, our group has developed [18F]-FDG-rhodamine, 
[124I]-SIB-rhodamine, and 68Ga-NOTA-rhodamine conjugates. These radioconjugates 
have demonstrated a high myocardial uptake and favorable pharmacokinetics which 
indicate that some of these radioconjugates may be useful for MPI studies (Aljammaz 
et al. 2014, 2015a, b, 2019).

The cyclotron-produced positron emitter copper-64 (64Cu) together with its 12.7  h 
half-life and well-known coordination chemistry makes it one of the most attractive 
radionuclides for PET imaging (McCarthy et al. 1997; Alliot et al. 2011; Szelecsenyi et al. 
1993). Therefore, varieties of 64Cu-radiolabeled biomolecules for potential use beyond 
the measurement of glucose metabolism were developed and investigated (Anderson 
and Ferdani 2009; Zhang et  al. 2013; Sprague et  al. 2007; Hao et  al. 2009; Evangelista 
et  al. 2013). Among these, 64Cu-labeled DOTA-somatostatin conjugate (64Cu-DOTA-
TATE) has been recently approved by the FDA for the localization of somatostatin 
receptor-positive neuroendocrine tumors (NETs) in adult patients. For the past sev-
eral years, we are interested in developing new agents for MPI studies; in this paper, we 
described the synthesis and initial evaluation of the 64Cu-NOTA- and 64Cu-NOTAM-
rhodamine conjugates.

Results
Chemistry

The synthetic methods for the preparation of NOTA- and NOTAM-rhodamines are 
mentioned in Schemes 1 and 2. These conjugates were fully characterized by HPLC 
and the mass spectral data and agreed with the expected structures. The precur-
sor’s NOTA- and NOTAM-rhodamine conjugates were obtained as an off-white 
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precipitate in 60% and 20% yield, respectively. The theoretical calculated molecular 
masses for NOTA- and NOTAM-rhodamine conjugates were 658 and 628, respec-
tively. These values agreed well with the attained ES-MS [M + 1]+ = 659 and 629, 
respectively. Chemical purities for NOTA- and NOTAM-rhodamine conjugates were 
higher than 98% as assessed by HPLC.

The reference CuII-NOTA- and CuII-NOTAM-rhodamine conjugates were 
obtained as off-white powders with overall chemical yields of ~ 50%, which appear 
to decompose beyond 180 °C. The calculated molecular masses for CuII-NOTA- and 
CuII-NOTAM-rhodamine were 720 and 690, respectively. These values were agreed 
with the attained ES-MS [M + 1]+ = 721 and 691, respectively. Chemical purities 
of CuII-NOTA- and CuII-NOTAM-rhodamine were higher than 97% as assessed by 
HPLC with retention times of 11.6 and 13.1 min, respectively.
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Scheme 1  Synthesis of NOTA precursors and 64Cu-NOTA-rhodamine conjugate. (i) 1,4,7-Triazacyclononane; 
(ii) 1,4,7-Triazacyclononane triacetic acid; (iii) N-Succinimidyl-1,4,7-triazacyclononane diacetic acid; (iv) 
NOTA-rhodamine
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Radiochemistry

In an attempt to develop novel PET rhodamine tracers for MPI studies with longer 
half-life and better pharmacokinetics, we have developed 64Cu-NOTA- and 64Cu-
NOTAM-rhodamine for myocardial PET imaging. The synthetic procedure for the 
preparation of 64Cu-NOTA- and 64Cu-NOTAM-rhodamine provided a facile and 
simple one-step reaction. Radiochemical yields were quantitative (> 95%) in less 
than 25  min. Radiochemical purities of these radioconjugates were always greater 
than 98% as determined by HPLC (Fig.  1) and confirmed by TLC. In the TLC 
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Scheme 2  Synthesis of NOTAM precursors and 64Cu-NOTAM-rhodamine conjugate. 1,4,7-Triazacyclononane; 
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chromatograms, the free copper remained at the origin (Rf: 0–0.15) while the radi-
olabeled complexes had Rf values of 0.8–0.95 (Fig. 2).

In addition, the calculated partition coefficient for 64Cu-NOTA- and 64Cu-
NOTAM-rhodamine conjugates were found − 0.57 ± 0.03 and − 0.38 ± 0.04, respec-
tively, representing ~ 41% lower hydrophilic characteristics of the 64Cu-NOTA- as 
compared to the 64Cu-NOTAM-rhodamine compound.

Fig. 1  HPLC chromatograms of (A) 64Cu-NOTA- and (B) 64Cu-NOTAM rhodamine conjugates
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Stability in plasma

The proteolytic degradation of the 64Cu-NOTA- and 64Cu-NOTAM-rhodamine was cal-
culated in human plasma in vitro. HPLC analysis of the plasma samples revealed that 
the 64Cu-NOTA- and 64Cu-NOTAM-rhodamine remained highly stable (> 97%) during 
incubation at 37 °C for at least 4 h, suggesting a high in vitro stability of these radiola-
beled bioconjugates.

In vivo Biodistribution

Preliminary biological properties of 64Cu-NOTA- and 64Cu-NOTAM-rhodamine in nor-
mal Fischer rats at 60 min p.i. are summarized in Table 1. The results of in vivo biodis-
tribution display rapid and more efficient clearance of 64Cu-NOTA-rhodamine from the 
blood and most of the organs and tissues than 64Cu-NOTAM-rhodamine. A high accu-
mulation by the kidneys (0.85 ± 0.41% ID/g) and a low uptake in the liver (0.35 ± 0.06% 
ID/g) for 64Cu-NOTA-rhodamine were observed demonstrating that the main route of 

Fig. 2  TLC chromatograms of (A) 64Cu-NOTA- and (B) 64Cu-NOTAM rhodamine conjugates. In the TLC 
chromatograms, the free copper remained at the origin (Rf: 0–0.15) while the radiolabeled.64Cu-complexes 
moved to Rf values of 0.8–0.95
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elimination was the urinary system. Whereas the moderate uptake of 64Cu-NOTAM-
rhodamine showed by the liver, spleen, and kidneys (1.19 ± 0.10, 1.19 ± 0.21, and 
0.55 ± 0.08% ID/g, respectively) indicates that the route of excretion was predominantly 
the hepatobiliary and partly urinary systems.

Additionally, the main target organ heart displayed the highest uptake of 9.50 ± 0.99% 
ID/g of the 64Cu-NOTAM-rhodamine, which is higher than the uptake of the 
64Cu-NOTA-rhodamine conjugate (5.60 ± 1.02% ID/g). Very good heart-to-blood ratios 
(32.76) and (13.33) were obtained for 64Cu-NOTAM- and 64Cu-NOTA-rhodamine con-
jugates, respectively. Initial Nano-PET imaging studies have clearly delineated the heart 
uptake of 64Cu-NOTA- 64Cu-NOTAM-rhodamine conjugates with high contrast relative 
to the background (Fig. 3). These images are concurrent with findings obtained in quan-
titative biodistribution data reported above.

These results demonstrate that the 64Cu-NOTAM-rhodamine conjugate has better 
heart uptake than the 64Cu-NOTA-rhodamine conjugate. However, the latter may pose 
suitable pharmacokinetic properties over the former and deserve more evaluation. Fur-
thermore, the radioactivity excreted into the urine at the time of sacrifice (60 min p.i.) 
was collected and checked by radio-HPLC to investigate the in  vivo stability of 64Cu-
NOTA- and 64Cu-NOTAM-rhodamine compounds. Radio-HPLC chromatograms of the 
urine samples displayed that a good amount of radioactivity (> 95%) was still attached 
to the radiolabeled bioconjugates. These findings show that these radiolabeled biocon-
jugates are not inclined to fast in vivo degradation and are associated well with the high 
metabolic stability obtained in human plasma in vitro.

Discussion
In an attempt to develop novel PET rhodamine tracers for MPI studies with longer half-
life and better pharmacokinetics, we have developed 64Cu-NOTA- and 64Cu-NOTAM-
rhodamine for myocardial PET imaging. The CuII ion is a 3d9 with coordination 
numbers ranging from 4 through 6 it has borderline hardness with high affinity to O and 
N donor atoms. Therefore, derivatives of TACN with two (NOTA, NOTAM) carboxy-
methyl pendant arms both complex Cu(II) with good affinity. The former has an N3O3 
donor set that forms a distorted trigonal prismatic geometry. [CuII NOTA] complex is 

Table 1  Biodistribution of 64Cu-NOTA- and NOTAM-rhodamine conjugates in normal rats at 60 min 
post-injection

The values are average of % injected dose/gram ± SD for n = 4

64Cu-NOTA-rhodamine
1 h

64Cu-NOTAM-
rhodamine
1 h

Blood 0.42 ± 0.09 0.29 ± 0.05

Lung 0.55 ± 0.12 0.39 ± 0.06

Liver 0.35 ± 0.06 1.19 ± 0.10

Kidney 0.85 ± 0.41 0.55 ± 0.08

Intestine 1.51 ± 0.50 2.64 ± 0.29

Heart 5.60 ± 1.02 9.50 ± 0.99

Muscle 0.90 ± 0.08 1.10 ± 0.09

Spleen 0.91 ± 0.32 1.19 ± 0.21
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hexa-coordinated and shows high stability with Log K 21.6. In NOTAM, the presence of 
more basic donor atoms in the pendant arms has led to an increase in the Log K value 
of CuII complexes (Log K 22.4) (Baranyai et al. 2020; Clarke et al. 1990; Clarke and Mar-
tell 1991a, b; Wadas et al. 2010; Tolmachev et al. 2017). Therefore, to develop new MPI 
agents, with suitable characteristics for the PET investigation of myocardial perfusion, 
we have prepared NOTA- and NOTAM-rhodamine compounds.

64Cu-Labeled molecules are promising imaging agents for PET due to the favorable 
nuclear characteristics of the isotope (t1/2 = 12.7 h, β + 17.4%, Emax = 0.656 MeV, β− 39%, 
Emax = 0.573  MeV) and its availability as no-carrier-added Cu-64. The longer physi-
cal half-life of 64Cu compared to other PET isotopes enables imaging at delayed time 
points, which allows sufficient time for clearance from background tissues, resulting in 
increased image contrast (Banerjee et al. 2014). The synthetic procedure for the prepara-
tion of 64Cu-NOTA- and 64Cu-NOTAM-rhodamine provided a facile and simple one-
step reaction, with high radiochemical yield and purity.

The results of in  vivo biodistribution display rapid and more efficient clearance 
of 64Cu-NOTA-rhodamine from the blood and most of the organs and tissues than 
64Cu-NOTAM-rhodamine. A high accumulation by the kidneys and a low uptake in 
the liver for 64Cu-NOTA-rhodamine were observed indicating that the urinary system 
is the main excretion pathway. While 64Cu-NOTAM-rhodamine showed the mod-
erate uptake by the liver, spleen, and kidneys suggesting that the route of excretion 
was predominantly the hepatobiliary and partly urinary systems. This behavior may 
be due to the nature of 64Cu-NOTA- and 64Cu-NOTAM as chelating agents and the 

Fig. 3  Coronal, transaxial, and sagittal images of normal rats after 60 min post-injection using (A) 
64Cu-NOTA-rhodamine and (B) 64Cu-NOTAM-rhodamine conjugates (injected dose 7.4 MBq each)
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overall net charge on 64Cu-NOTA- and 64Cu-NOTAM-rhodamine molecules (Miao 
et al. 2006). Additionally, the 64Cu-NOTAM-rhodamine displayed the highest uptake 
in the main target organ heart which is higher than the uptake of the 64Cu-NOTA-
rhodamine conjugate. These values are similar to heart uptake values obtained from 
other radiofluorinated rhodamine conjugates reported previously (Gottumukkala 
et al. 2010; Bartholoma et al. 2012, 2013; Breeman et al. 2005, 2011) and at least two 
times better than values obtained using 68Ga-NOTA- and 68Ga-NODAGA-rhoda-
mine conjugates. Additionally, good heart-to-blood ratios of 32.76 for 64Cu-NOTAM 
and 13.33 for 64Cu-NOTA-rhodamine conjugates were obtained. The heart-to-blood 
ratios of the 64Cu-NOTAM were found to be superior to the values obtained for other 
rhodamine conjugates, for example, 18F-FDG-rhodamine (28.10) and 68Ga-NOTA-
rhodamine (4.56) (Aljammaz et  al. 2015a, b, 2019), suggesting the usefulness of the 
64Cu-NOTAM. Moreover, initial Nano-PET imaging studies have clearly delineated 
the heart uptake of 64Cu-NOTA- 64Cu-NOTAM-rhodamine conjugates with high 
contrast relative to the background (Fig. 3). These images are concurrent with find-
ing obtained in quantitative biodistribution data reported above. The data suggest 
that the 64Cu-NOTAM-rhodamine conjugate has better heart uptake properties than 
the 64Cu-NOTA-rhodamine conjugate. But, the latter may pose favorable biokinet-
ics over the former and deserve further investigation. Radio-HPLC chromatograms 
of the urine samples displayed that a good amount of radioactivity was still attached 
and these radiolabeled bioconjugates are not inclined to fast in vivo degradation. It is 
worth mentioning here that when these radiolabeled conjugates were investigated in 
normal Balb/c mice, nearly no accumulation of 64Cu-NOTA- and 64Cu-NOTAM-rho-
damine in the mice hearts were found, probably due to the in vivo enzymatic break-
down of these radiotracers in mouse serum (data not shown) as observed previously 
for other rhodamine compounds in mice (Gottumukkala et al. 2010; Aljammaz et al. 
2015a, b). These results indicate that mice may not be suitable animal models for the 
preclinical evaluation of rhodamine conjugates.

Methods
All chemicals and reagents used in this work were all highest purity grade obtained from 
commercial sources and were used without further purification unless stated. Acetoni-
trile (ACN) and dimethylformamide (DMF) were kept over molecular sieves. Sep-Pak 
cartridges were purchased from Waters-Millipore. Thin-layer chromatography-SG 
sheets were purchased from Grace Discovery Inc. High-performance liquid chroma-
tography (HPLC) analysis was carried out on Luna; Phenomenex C-18 reversed-phase 
column (analytical, 250 mm × 4.6 mm). The solvent system used was isocratic (eluant: 
ACN/H2O, 95/5 with 0.1% TFA at a flow rate of 1.0 mL/min). A Jasco chromatographic 
system equipped with a variable wavelength ultraviolet monitor and in tandem with a 
Canberra flow through radioactivity detector was used. Ultraviolet absorption was mon-
itored at 254 nm. Chromatograms were acquired and analyzed using BORWIN software. 
Elemental analyses were performed on a Perkin Elmer CHN 2400 analyzer. The melting 
points were measured using a Thomas-Hoover Unimelt capillary melting point appara-
tus. Mass spectroscopy was performed on Quattra electrospray mass spectrometer.
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Chemistry

1,4,7‑Triazacyclononane‑N,N′,N″‑triacetic acid‑rhodamine conjugate (NOTA‑rhodamine, iv)

NOTA-rhodamine conjugate was synthesized utilizing the method reported previ-
ously (Aljammaz et  al. 2014, 2015a, b). In brief, ethylene diamine-rhodamine con-
jugate (EDA-rhodamine) was dissolved in DMF. To this, triethylamine (TEA, 2 
equivalent) and N-Succinimidyl-1,4,7-triazacyclononane-N,N′,N″-triacetic acid 
(NOTA-NHS, 1 equivalent) were added. The mixture was shielded from light and 
stirred at 70  °C for 1 h. The ACN was then added to precipitate the product which 
was filtered and washed a few times with ACN and dried under vacuum to pro-
vide an off-white precipitate compound (Scheme  1). Yield = 57%; Mp = 122–125  °C. 
C34H40N7O7 = MW 658.7

1,4,7‑Triazacyclononane‑N,N′‑diethylamine (NOTAM, 3)

NOTAM was synthesized by dissolving hydrochloric acid salt of 1,4,7-triazacyclon-
onane (TACN. HCl, 500  mg, 2.1  mmol) in ACN (10  mL) followed by the addition of 
triethylamine (TEA, 1.16 mL, 8.4 mmol) (Scheme 2). To the stirred mixture, bromoeth-
ylamine protected with BOC group (430 mg, 2.1 mmol) in ACN (4 mL) was added and 
the reaction mixture was then stirred and refluxed for 2  h. The solution was concen-
trated by rotary evaporation to leave a light yellowish solid product which was washed 
with ACN (10 mL) to leave a yellowish precipitate. This was then filtered, washed with 
ACN (10 mL), and dissolved in CH2Cl2/TFA (1:1, 10 mL) before stirring at room temper-
ature for 30 min for deprotection. The mixture was then dried in vacuo to yield 258 mg 
(57.1%) of NOTAM as a yellow oily material.C10H25N5 = MW 215.3.

1,4,7‑Triazacyclononane‑N,N′‑diethylamine‑N′′‑acetic acid (NOTAM‑AcOH, 4)

NOTAM (348 mg, 1.42 mmol) was dissolved in ACN (10 mL) followed by the addition 
of TEA (0.4 mL, 1.42 mmol). To the stirred mixture, bromoacetic acid (BAA, 0.2 g, 
1.42  mmol) in ACN (3  mL) was added drop-wise over 5  min. The reaction mixture 
was then stirred and refluxed for 3 h. The brown solution was concentrated by rotary 
evaporation to leave a brown solid product which was washed with ACN (8 mL) to 
leave a creamy precipitate. The off-white precipitate was then filtered, washed with 
ACN (10 mL), and dried in vacuo to yield 232 mg (59.8%) of NOTAM as an oily mate-
rial. C12H25N2O2 = MW 273.3.

N‑Succinimidyl‑1,4,7‑triazacyclononane‑N,N′‑diethylamine‑N′′‑acetic acid (NOTAM‑NHS, 5)

The oily material (120 mg, 0.39 mmol) was dissolved in ACN (6 mL) followed by the 
addition of NHS (43 mg, 0.39 mmol) and DCC (85 mg, 0.39 mmol). The reaction mix-
ture was stirred at ambient temperature for 3 h. The by-product dicyclohexylurea was 
then removed by filtration and the filtrate was dried by rotary evaporation to furnish 
105 mg (72.7%) of NOTAM-NHS as an oily product. C16H29N6O4 = MW 370.

1,4,7‑Triazacyclononane‑N,N′‑diethylamine‑N′′‑rhodamine (NOTAM‑rhodamine conjugate, 6)

For the synthesis of the NOTAM-rhodamine, EDA-rhodamine conjugate (0.15 mmol) 
in DMF was mixed with TEA (0.30  mmol) and NOTAM-NHS (0.15  mmol). The 



Page 11 of 15AlHokbany et al. EJNMMI Radiopharmacy and Chemistry            (2022) 7:19 	

reaction mixture was allowed to be stirred in dark for 60 min at 70o C. Acetonitrile 
was added to precipitate the product which was filtered, and washed a few times with 
ACN. The product was dried under a vacuum to give an off-white precipitate com-
pound. Yield 26%; Mp = 108–110 °C. C34H46N9O3 = MW 628.70.

Reference CuII‑compounds (CuII‑NOTA‑ and CuII‑NOTAM‑rhodamines)

The Cu-NOTA- and Cu-NOTAM-rhodamine reference compounds were prepared fol-
lowing the procedure reported previously (Aljammaz et al. 2019). In brief, NOTA (5 mg, 
7.6 µmol) and NOTAM-rhodamine (5 mg, 7.0 µmol) were allowed to react with an equi-
molar amount of copper chloride (CuCl2) in 0.1% acetic acid in EtOH, 500 µL, pH ~ 4.5) 
at 95  °C for 30  min. Acetonitrile was added to precipitate the reference compounds 
which were filtered and washed a few times with ACN. After centrifugation, the com-
pounds were washed a few times and dried under a vacuum to yield products like the 
yellow powders.

Radiochemistry
64Cu‑NOTA‑ and 64Cu‑NOTAM‑rhodamine compounds
64CuCl2 was produced by the bombardment of nickel-64 target (64Ni, 100 mg ± 10%) for 
2 h with 15.5 MeV protons and 100 μA beam current from the Cyclon-30 (IBA) using the 
64Ni(p,n)64Cu nuclear reaction. The irradiated target was dissolved in hydrochloric acid 
(HCl, 9 M, 8–10 mL) followed by hydrogen peroxide (H2O2, 0.15 × 1 mL, 30%) with con-
tinuous heating (80o C). The dissolved nickel target was transferred in a bottle (150 mL) 
followed by complete drying then HCl (6 N, 10 mL) was added and passed through an 
anion exchange column cartridge (TK201, 2 mL) which was preconditioned with HCl 
(6 M, 5 mL). TK201 cartridge was rinsed with HCl (6 M, 5 mL) to remove traces of 64Ni 
followed by rinsing with HCl (4.5 M, 5 mL) to remove traces of cobalt isotopes. 64CuCl2 
was then eluted with HCl (0.5 M, 10 mL).

The synthetic approach for the preparation of 64Cu-NOTA- and -NOTAM-rhodamine 
conjugates was straightforward. 64CuCl2 solution (185–370 MBq) was reacted in sealed 
vials with NOTA- and NOTAM-rhodamine conjugate separately (50 µg each) in sodium 
acetate buffer (NaOAc, 5 M, pH ~ 4.5, 1.0 mL) at 95 °C for 30 min (Schemes 1, 2). The 
reaction mixtures were diluted with H2O (3 mL), passed through the C18 Sep-Pak car-
tridge, dried, and finally eluted with ethanol (EtOH, 5 mL). EtOH was then evaporated 
and the residue was reconstituted with normal saline before passing through a 0.22 μm 
pore membrane filter for in vitro and in vivo experiments.

Partition Coefficient

The partition coefficient of 64Cu-NOTA- and 64Cu-NOTAM-rhodamine conjugates 
(100 µL, 0.74 MBq each) was determined following the procedure reported previously 
(Aljammaz et al. 2019). The partition coefficient 64Cu-NOTA- and 64Cu-NOTAM-rho-
damine conjugates was determined by the function: Log10 (counts in the octanol layer/
counts in the aqueous layer).
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Stability in plasma
64Cu-NOTA- and 64Cu-NOTAM-rhodamine complexes (0.74 MBq, 100 µL each) were 
incubated with plasma (200 µL) in duplicate at 37  °C for 2 h. After incubation, pro-
teins were precipitated by ACN/EtOH (400 µL, 1/1 v/v) and centrifuged at 5000 rpm 
for 5  min. The supernatant phase was filtered and assessed by HPLC following the 
conditions mentioned above.

In vivo biodistribution

Animal studies were conducted strictly according to the international regulations and 
guidelines governing the safe and proper use of laboratory animals. The biodistribu-
tion was carried out in normal Fischer male rats (body weight 50–70 g) to determine 
the in vivo distribution behavior of the 64Cu-NOTA- and 64Cu-NOTAM-rhodamine 
conjugates. 100 µL of the radiotracers formulated in saline were injected via the lat-
eral tail vein of rats. Each injected dose contained ~ 2.59 MBq of radioactivity. Rats 
were sacrificed after 1 h post-injection (p.i.) and tissues/organs of interest were dis-
sected, weighed, and counted for radioactivity. The percent of the injected dose per 
gram (% ID/g) was measured by counting all tissues in a γ-counter.

In vivo nano PET/CT imaging

The PET/CT scans were performed using a preclinical NanoPET/CT scanner 
(Mediso, Hungary) on normal Fischer male rats (body mass 50–75 g). 64Cu-NOTA- 
and 64Cu-NOTAM-rhodamine conjugates (100 μL, 7.4 MBq) were injected into each 
rat through the tail vein and placed in the NanoPET/CT scanner with continuous 
O2 and 2% isoflurane supply. 20 min post tail vein injection of the radiotracers, the 
rats were imaged for 20 min PET/CT acquisition time. A static scan was acquired at 
60 min p.i. The CT scan was performed using the following parameters: X-ray volt-
age = 50 kVp, Exposure time = 300  ms. A total projection of 288 projects over 360° 
of rotation was acquired and reconstructed using a cosine filter. This was followed by 
a PET data acquisition with the following parameters: 5-ns coincidence window and 
400–600 keV energy window in 1–5 coincidence mode. Crystal efficiency correction 
was also applied, with a ring difference of 8, and the images were reconstructed by a 
three-dimensional ordered-subsets; exception maximum algorithm (subsets, 4; itera-
tions, 6). The pixel size was 0.3 mm. The acquired data in these studies were analyzed 
by InterVeiw FUSION software developed by Mediso.

Statistical analysis

Data are expressed as mean ± S.D. where appropriate. For data comparisons, a Stu-
dent’s t test was performed on the mean values using Graph-Pad Software (Graph-Pad 
Software Inc., San Diego, CA, USA). A probability value of P < 0.05 was considered 
statistically significant.
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Conclusion
In a suitable radiosynthesis approach, 64Cu-NOTA- and 64Cu-NOTAM-rhodamine 
compounds were prepared in high radiochemical yields and purities in about 25 min. 
Preliminary biodistribution in normal Fischer rats at 60  min p.i, exhibited a higher 
myocardial uptake of 64Cu-NOTAM-rhodamine conjugate over the 64Cu-NOTA-rho-
damine. The data suggest that these radioconjugates may be suitable for MPI studies 
using PET. However, further evaluation is needed.
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