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Abstract

The term of neurodegenerative diseases covers a heterogeneous group of disorders
that are distinguished by progressive degeneration of the structure and function of
the nervous system such as dementias, movement disorders, motor neuron disorders, as
well as some prion disorders. In recent years, a paradigm shift started for the diagnosis of
neurodegenerative diseases, for which successively clinical testing is supplemented by
biomarker information. In research scenarios, it was even proposed recently to substitute
the current syndromic by a biological definition of Alzheimer’s diseases. PET examinations
with various radiotracers play an important role in providing non-invasive biomarkers and
co-morbidity information in neurodegeneration. Information on co-morbidity, e.g. Aβ
plaques and Lewy-bodies or Aβ plaques in patients with aphasia or the absence of Aβ
plaques in clinical AD patients are of interest to expand our knowledge about
the pathogenesis of different phenotypically defined neurodegenerative diseases.
Moreover, this information is also important in therapeutic trials targeting
histopathological abnormalities.
The aim of this review is to present an overview of the currently available
radiotracers for imaging neurodegenerative diseases in research and in routine
clinical settings. In this context, we also provide a short summary of the most
frequent neurodegenerative diseases from a nuclear medicine point of view,
their clinical and pathophysiological as well as nuclear imaging characteristics,
and the resulting need for new radiotracers.
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Introduction
It is well recognized that increased life expectancy results in an increased frequency of

neurodegenerative diseases. In the last two to three decades, the development of new

diagnostic and therapeutic methods has been intensified in neurodegenerative diseases.

Molecular radiopharmaceutical-based neuroimaging is a growing field and provides

several new diagnostic methods to investigate and characterize neurodegenerative dis-

eases during life. This review summarizes the facts for the most frequent neurodegen-

erative diseases from a nuclear medicine point of view. Furthermore, the review

provides information on approved radiotracers and ongoing research activities in the
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development of new radiotracers for imaging neurodegenerative diseases as well as a

short passage about the need for novel radiotracers.

Neurodegenerative diseases – important histopathological and clinical facts
Alzheimer’s disease (AD)

Alzheimer’s disease (AD) is the most common neurodegenerative disease causing de-

mentia in the elderly. Histopathological characteristics of this disease are a progressive

accumulation of β-amyloid (Aβ) plaques and hyperphosphorylated neurofibrillary tau

protein (tau). However, only approximately 50 % of the patients have solely Alzheimer’s

pathology. Many patients show additional pathologic changes related to other neurode-

generative diseases in autopsy studies (Alzheimer’s Association report 2018 - https://

www.sciencedirect.com/science/article/pii/S1552526018300414). Along with the typical

clinical features like memory impairment, especially in the semantic and episodic

domain and the executive dysfunction (McKhann et al. 2011), atypical variants of AD

exist. As such, posterior cortical atrophy (PCA) and logopenic variant primary progres-

sive aphasia (lvPPA) are labeled as atypical AD, since the histopathological changes (i.e.

Aβ and tau accumulation) in these neurodegenerative diseases determine the “typical” AD

features, although the distributional pattern of the pathologic changes seems to be differ-

ent (Crutch et al. 2012; Harris and Jones 2014). However, in both PCA and lvPPA a sig-

nificant minority of cases showed other underlying pathologies than AD, e.g. Lewy bodies,

transactive response DNA binding protein of about 43 kDa (TAR DNA-binding protein

43, TDP-43) proteinopathies, “pure” tauopathy or cerebrovascular disease (Crutch et al.

2012; Harris and Jones 2014) (Table 1). The core clinical features of patients with PCA

are caused by a decline in visual processing and other posterior cognitive functions, e.g.

space and/or object perception deficits, simultanagnosia or constructional dyspraxia

(Crutch et al. 2017). The core clinical features of lvPPA are impaired single-word retrieval

in spontaneous speech and naming as well as impaired repetition of sentences and

phrases (Harris and Jones 2014).

Frontotemporal lobar degeneration (FTLD)

FTLD is a potpourri of clinically, histopathologically and genetically different disorders

that become united due to predominant pathological involvement of the frontal and

temporal brain regions. Three distinct clinical phenotypes of FTLD are recognized in-

cluding a behavior/dysexecutive syndrome - the behavioral variant of frontotemporal

dementia (bvFTD); language disorders - the primary progressive aphasia (PPA): seman-

tic variant (svPPA) and non-fluent/agrammatic variant (nfvPPA); and motor disorders

(amyotrophic lateral sclerosis, corticobasal and progressive supranuclear palsy

syndromes).

In general, an individual FTLD disorder can be ascribed to different histopathologies

such as tauopathy (FTLD-tau), TDP-43 proteinopathy (FTLD-TDP-43) and the FET

protein family that consists of Fused in sarcoma, Ewing sarcoma and TATA-binding

protein associated factor 15 proteinopathy (FTLD-FET) (Table 1). Here, some histo-

pathology is more often seen in one than in another FTLD disorder (Harris and Jones

2014; Bang et al. 2015; Mackenzie and Neumann 2016). Thus, more than 70% of the

patients with svPPA have TDP-43 proteinopathy. Over 50% of patients with nfvPPA
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have FTLD-tau, approximately 20% show TDP-43 proteinopathy (Harris and Jones

2014). Almost half of the patients with bvFTD have FTLD-tau (Pressman and

Miller 2014) and more than 25% TDP-43 pathology (Bang et al. 2015). Of interest,

tauopathies can be differentiated in at least 5 subtypes according to their molecular

subtype (Mackenzie and Neumann 2016).

Parkinsonian syndromes

In Parkinson’s disease (PD), a degeneration of the nigrostriatal system occurs causing a

reduction of the neurotransmitter dopamine. Degeneration of dopaminergic neurons in

the substantia nigra pars compacta is an inherent neuropathological sign of PD.

Histologically, most patients suffering from PD exhibit intracellular accumulation of

protein inclusions mainly constituted of α-synuclein (Lewy bodies). However, some pa-

tients with specific genetic forms of PD do not have Lewy body pathology and it

Table 1 Summary of histopathological findings of the different neurodegenerative syndromes

Disease Aβ plaques Tau deposits α- synuclein TDP-43 Other
pathologies

AD ++
(in up to 90%)l

++
3R/4R

– – –

PCA ++
(in up to 78%)a,c

++
3R/4R (AD in ≈ 76%),
4R (CBD in ≈ 9,5%)c

+
Lewy-bodies
(in ≈ 14%)c

– (+)
Prion-
associated
diseases

lvPPA ++
(in up to 56%)b

++
3R/4R (AD in up to 56%)b,
other subtypes (in ≈ 10%)b

(+)
Lewy-bodies
(< 10%)e

+
(in up to 25%,
mainly type A)d,

(+)
CJD

bvFTD +
(in up to 13%)f

+
4R (CBD in up to ≈ 9%)h

4R (PSP ≈ 8%)h

3R (PiD in ≈ 7%)h

3R/4R (AD in ≈ 13%)h

– ++
(type A in ≈8%,
type B in ≈23%,
type C in ≈7%
type U in ≈ 10%)h

(+)
FTLD-FUS in
≈7%h

svPPA +
(in up to 14%)b

+
3R (PiD in up to 15%)b

– ++
(in up to 86%, pre-
dominantly type
C)b

–

nfvPPA +
(in up to 12%)g

++
4R (CBD in up to ≈ 54%)h

4R (PSP ≈ 18%)g,h

3R (PiD in ≈ 12%)g

3R/4R (AD in ≈ 12%)g

(+)
Lewy-bodies
(< 10%)b,g

+
(type A in up to
18%) g,h

–

PD/
DLB

++
(PD in up to 15%,
DLB in up to 80%)k

(+)
4R (PSP in ≈ 8%)i

4R (CBD in ≈ 2%)i

++
Lewy bodies
(in up to
77%)i,j

α- synuclein
(MSA in ≈5%)i

– –

HD – +
3R/4R

– ++
Huntingtin

–

Aβ β-amyloid, AD Alzheimer’s disease, bvFTD Behavioural variant frontotemporal dementia, CBD Corticobasal
degeneration, CJD Creutzfeld Jacob disease, FTLD-FUS Frontotemporal lobar degeneration-fused in sarcoma, lvPPA
Logopenic variant primary progressive aphasia, MSA Multisystem atrophy, PCC Posterior cingulate cortex, PiD Pick’s
disease, PSP Progressive supranuclear palsy, svPPA Semantic variant primary progressive aphasia, TDP Transactive
response DNA binding protein of about 43 kDa, 3R three repeat tau isoform, 4R four repeat tau isoform
++ Frequently occurring; + Sometimes occurring; (+) Rarely occurring; − Not occurring
a(Tang-Wai et al. 2004) b(Harris and Jones 2014) c(Renner et al. 2004) d(Rogalski et al. 2014) e(Harris et al. 2013) f (Perry et
al. 2017) g (Mesulam et al. 2014) h (Caso et al. 2014) i (Dickson 2018) j (Skogseth et al. 2017) k (Drzezga 2010) l(Jack et
al. 2018)
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remains unclear how Lewy bodies and neuronal loss are connected to each other. The

typical clinical criteria of PD consist of symptoms such as bradykinesia, rigidity or rest-

ing tremor as cardinal motor manifestations (Postuma et al. 2015). Important support-

ive criteria include response to dopamine replacement, unilateral onset, olfactory

dysfunction and REM sleep behavior disorder (Berg et al. 2013; Postuma et al. 2015).

Corticobasal degeneration (CBD), progressive supranuclear palsy (PSP) and multisys-

tem atrophy (MSA) are classified as atypical parkinsonisms. Histopathologically, CBD

and PSP belong to primary tauopathies while MSA, DLB and PD are characterized by a

pathologic accumulation of α-synuclein protein (α-synucleinopathies). The clinical

presentation of CBD can be subdivided into 4 phenotypes: corticobasal syndrome, be-

havior spatial syndrome, nfvPPA and PSP (Armstrong et al. 2013) demonstrating that

the accuracy to diagnose CBD ante-mortem is still limited.
Clinical core features of PSP are akinetic-rigid syndrome, postural instability or falls

and supranuclear ophthalmoplegia (Bensimon et al. 2009). The most recent version of

PSP criteria published by the Movement Disorder Society includes eleven clinical phe-

notypes of PSP (Ali and Josephs 2018). Overall, the clinical diagnoses of post-mortem-

validated PSP cases were correctly established only in 19% of cases at the first clinical

visit, and in 71% of cases over the course of the disease (Respondek et al. 2013). Fur-

thermore, an average of 24% of post-mortem histopathologically diagnosed cases of

MSA, PD and CBD were, ante-mortem, falsely diagnosed as PSP (Respondek et al.

2013). Also, the occurrence of concomitant AD (in approximately 36%) or PD (in ap-

proximately 20%) pathologies in PSP patients is remarkable (Dugger et al. 2014).

Histopathologic characteristics of MSA are inclusions of misfolded α-synuclein in oli-

godendrocytes (Jellinger 2014). According to the clinical presentation, MSA is usually

subdivided into a parkinsonian subtype (MSA-P) and a cerebellar subtype (MSA-C).

For the clinical phenotype, autonomic failure is a core symptom which must be present

to establish the diagnosis of MSA (Gilman et al. 2008).

Lewy body dementia pathologies

Dementia with Lewy-bodies (DLB) is an α-synucleinopathy, characterized by wide-

spread accumulation of Lewy bodies and Lewy neurites in the brain-stem, limbic sys-

tem and cortical areas (Braak and Braak 2000) and a higher percentage of DLB

compared to PD patients with dementia (PDD) show Aβ deposits in histopathological

examinations. Consequently, approximately 80% of DLB patients have a positive Aβ

PET scan (Drzezga 2010) (Table 1) indicating a significant overlap between AD and

DLB, which is reflected in the clinical presentation of the patients. Only 50% of patients

with DLB pathology show the typical symptoms of DLB (McKeith et al. 2016). Core

clinical features are fluctuating cognition, recurrent visual hallucinations, rapid eye

movement (REM) sleep behaviour disorder and parkinsonism (McKeith et al. 2017).

However, “the likelihood that the observed neuropathology explains the DLB clinical

syndrome is directly related to the severity of Lewy-related pathology, and inversely re-

lated to the severity of concurrent AD-type pathology” (McKeith et al. 2005).

More than 75% of PDD patients develop in the long term clinical course of the

disease (Aarsland et al. 2003). PDD is characterized by an intracellular accumula-

tion of α-synuclein (Lewy bodies). Approximately 15% of PDD patients show
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cerebral β-amyloid plaques (Lucero et al. 2015; Edison et al. 2008). Due to an over-

lap of clinical and morphological features there is a continuous debate (Friedman 2018) of

whether DLB and PDD are the same disease with different phenotypic representation of

Lewy body disease spectrum.

Huntington’s disease (HD)

HD is an autosomal-dominant neurodegenerative disease caused by a single gene

mutation (Kim and Fung 2014) i.e. a CAG repeat expansion in exon 1 of the hun-

tingtin gene (MacDonald et al. 1993). This repeated CAG expression results in an

abnormal toxic protein which is named Huntingtin. This protein is expressed in all

brain cells and disturbs protein degradation as well as several other cellular pro-

cesses, e.g. mitochondrial function, axonal trafficking or peripheral immune regula-

tion (Kim and Fung 2014). The cerebral accumulation of hyperphosphorylated tau

aggregates seems to be a further histopathological characteristic besides the accu-

mulation of the mutated Huntingtin protein (Vuono et al. 2015). From the clinical

perspective, HD is characterized by progressive motor symptoms, cognitive decline

and neuropsychiatric disturbances (Kim and Fung 2014).

Role of PET imaging in neurodegenerative diseases
Currently, the classification of neurodegenerative diseases is in permanent change and

progress. Predominantly, phenotypical definitions are increasingly substituted – at least

in research settings- by classifications which include biomarkers for the underlying

pathophysiological process and thus lead to a more biological definition of neurodegen-

erative diseases (Jack et al. 2018).

This development is of great significance for nuclear medicine, as molecular imaging

using PET tracers can provide biomarker information, e.g. [18F]FDG as a biomarker of

neuronal injury or Aβ PET as a biomarker of AD pathology (Barthel et al. 2015). Table 2

summarizes all radiotracers mentioned in the review with abbreviation and chemical

definition.

Molecular imaging of neurodegeneration

[18F]FDG PET

Glucose is the energy supplier of the brain. In all neurodegenerative diseases, impair-

ment of neuronal function and therefore reduced energy metabolism occur. [18F]FDG

(Fig. 1) as a marker for neuronal injury can be used to detect this impairment, and it is

well known that different neurodegenerative diseases show distinct patterns of reduced

[18F]FDG uptake (Hellwig et al. 2012; Barthel et al. 2015) (Table 3). However, the hypo-

metabolic patterns of some neurodegenerative disorders overlap. Due to its broad avail-

ability and sufficient diagnostic accuracy, [18F]FDG is currently the widely used

radiotracer in imaging of neurodegenerative diseases in clinical routine.

Synaptic density PET

In neurodegenerative diseases as well as in a variety of other neurological and psy-

chiatric diseases, a reduction of synaptic density occurs during the course of dis-

ease (Feng et al. 2009; van Vliet et al. 2009; DeKosky and Scheff 1990; Hamos et
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Table 2 Chemical structures of all radiotracers discussed

Abbreviation Chemical Structure

[11C]A-582941 2-[11C]methyl-5-[6-phenylpyridazine-3-yl]octahydropyrrolo[3,4-c]pyrrole

[11C]A-844606 2 (5-[11C]methyl-1,3,3a,4,6,6a-hexahydropyrrolo[3,4-c]pyrrol-5-yl]-4a,9a-dihydroxanthen-9-
one

[11C]AZD2184 2-(6-[11C]methylaminopyridin-3-yl)-1,3-benzothiazol-6-ol

[11C]CHIBA-1001 (4-[11C]methylphenyl)-1,4-diazabicyclo[3.2.2]nonane-4-carboxylate

[11C]cocaine methyl(1R,2R,3S,5S)-3-(benzoyloxy)-8-[11C]methyl-8-azabicyclo[3.2.1]octan-2-carboxylat

[11C]DAA1106 N-(5-fluoro-2-phenoxyphenyl)-N-[(5-methoxy-2-[11C]methoxyphenyl)methyl]acetamide

[11C]JNJ7777120 1-[(5-chloro-1H-indol-2-yl)carbonyl]-4-[11C]methylpiperazine

[11C]KTP-ME 2-(3-benzoyl-phenyl)-propionic acid-[11C]methylester

[11C]methylphenidate [11C]methylphenyl-piperidin-2-yl-acetic-acid

[11C]MP4A N-[11C]methylpiperidin-4-yl acetate

[11C]NS14492 4-{5-[1-[11C]methyl-1H-pyrrol-2-yl]-1,3,4-oxadiazol-2-yl}-1,4-diazabicyclo[3.2.2]nonane

[11C]PBB3 2-[(1E,3E)-4-[6-([11C]methylamino)pyridin-3-yl]buta-1,3-dienyl]-1,3-benzothiazol-6-ol

[11C]PBR-28 N-[(2-[11C]methoxyphenyl)methyl]-N-(6-phenoxypyridin-3-yl)acetamide

[11C]PiB 2-[4-([11C]methylamino)phenyl]-1,3-benzothiazol-6-ol

[11C]PK-11195 N-sec-Butyl-1-(2-chlorophenyl)-N-[11C]methyl-3-isoquinolinecarboxamide

[11C] PMP (1-[11C]methylpiperidin-4-yl)propionate

[11C]raclopride 3,5-dichloro-N-[[(2S)-1-ethylpyrrolidin-2-yl]methyl]-2-hydroxy-6-[11C]methoxybenzamide

[11C]UCB-J ((R)-1-((3-([11C]methylpyridin-4-yl)methyl)-4-(3,4,5-trifluorophenyl)pyrrolidin-2-one)

2-[18F]F-A-85380 2-[18F]fluoro-3-(2(S)-azetidinylmethoxy)pyridine

6-[18F]F-A-85380 6-[18F]fluoro-3-(2(S)-azetidinylmethoxy)pyridine

(−)-[18F]flubatine (−)-(1R,5S,6S)-6-(6-[18F]fluoro-pyridine-3-yl)-8-aza-bicyclo[3.2.1]octane

(+)-[18F]flubatine (+)-(1S,5R,6R)-6-(6-[18F]fluoro-pyridine-3-yl)-8-aza-bicyclo[3.2.1]octane

[18F] ASEM 3-(1,4-diazabicyclo[3.2.2]nonan-4-yl)-6-[18F] fluoranyldibenzothiophene 5,5-dioxide

[18F]AV-133 (2R,3R,11bR)-9-(3-[18F]fluoranylpropoxy)-10-methoxy-3-(2-methylpropyl)-2,3,4,6,7,11b-
hexahydro-1H-benzo[a]quinolizin-2-ol

[18F]AV-1451 7-(6-[18F]fluoranylpyridin-3-yl)-5H-pyrido[4,3-b]indole

[18F]AZAN (1R,2R,4S)-2-[5-(6-[18F]fluoranylpyridin-2-yl)pyridin-3-yl]-7-methyl-7-
azabicyclo[2.2.1]heptane

[18F]DBT-10 (7-(1,4-diazabicyclo[3.2.2]nonan-4-yl)-2-([18F]fluorodibenzo[b,d]thiophene 5,5-dioxide)

[18F]DPA-714 [N,N-diethyl-2-(2-(4-(2[18F]fluoroethoxy)phenyl)5,7dimethylpyrazolo[1,5a]pyrimidin-3-
yl)acetamide]

[18F]FDOPA (2S)-2-amino-3-(2-[18F]fluoranyl-4,5-dihydroxyphenyl)propanoic acid

[18F]FDG (2S,3R,4S,5S,6R)-3-[18F]fluoranyl-6-(hydroxymethyl)oxane-2,4,5-triol

[18F]FE-PE2I (E)-N-(3-iodoprop-2-enyl)-2β-carbo[18F]fluoroethoxy-3β-(4′-methyl-phenyl)nortropane

[18F]FEPPA N-[[2-(2-[18F]fluoranylethoxy)phenyl]methyl]-N-(4-phenoxypyridin-3-yl)acetamide

[18F]FIBT 2-(p-methylaminophenyl)-7-(2-[18F]fluoroethoxy)imidazo-[2,1-b]benzothiazole

[18F]florbetaben 4-[(E)-2-[4-[2-[2-(2-[18F]fluoranylethoxy)ethoxy]ethoxy]phenyl]ethenyl]-N-methylaniline

[18F]florbetapir 4-[(E)-2-[6-[2-[2-(2-[18F]fluoranylethoxy)ethoxy]ethoxy]pyridin-3-yl]ethenyl]-N-
methylaniline

[18F]flutemetamol 2-[3-[18F]fluoranyl-4-(methylamino)phenyl]-1,3-benzothiazol-6-ol

[18F]GTP1 3-[4-(2-[18F]fluoro, 2,2-deuteroethyl)-piperidin-1-yl]-benzo[4,5]imidazo[1,2-a]pyridine

[18F]MK-6240 6-[18F]fluoranyl-3-pyrrolo[2,3-c]pyridin-1-ylisoquinolin-5-amine

[18F]MNI-1126 4-(3,5-di[18F]fluoro-phenyl)1-(3-methyl-pyridin-4-ylmethyl)pyrrolidin-2-one

[18F]NAV4694 2-[2-[18F]fluoro-6-(methylamino)-3-pyridinyl]-1-benzofuran-5-ol

[18F]NIDA522131 6-chloro-3-((2-(S)-azetidinyl)methoxy)-5-(2-[18F]fluoropyridin-4-yl)pyridine
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al. 1989; Kang et al. 2012; Glantz and Lewis 2000). Quantification of synaptic density is

usually performed post-mortem. Development of levetiracetam-based PET radioligands

targeting synaptic vesicle glycoprotein 2A (SVA2) now enables the in-vivo quantification

of this parameter (Koole et al. 2018; Finnema et al. 2016). The most recently developed

tracer [11C]UCB-J (Fig. 2) has demonstrated favorable pharmacokinetics and quantifica-

tion properties in preclinical as well as in first-in-human studies (Finnema et al. 2016). An
18F-labeled derivative ([18F]MNI-1126) (Fig. 2) has also been evaluated recently in non-

human primates showing promising in-vivo characteristics (Constantinescu et al. 2018).

Table 2 Chemical structures of all radiotracers discussed (Continued)

Abbreviation Chemical Structure

[18F]nifene 3-[[(2S)-2,5-dihydro-1H-pyrrol-2-yl]methoxy]-2-[18F]fluoranylpyridine

[18F]nifrolene 3-[[(2S)-2,5-dihydro-1H-pyrrol-2-yl]methoxy]-5-(3-[18F]fluoranylpropyl)pyridine

[18F]nifzetidine 3-(2-(S)-azetidinylmethoxy)-5-(3′-[18F]fluoropropyl) pyridine

[18F]NS10743 2-(1,4-diazabicyclo[3.2.2]nonan-4-yl)-5-(4-[18F]fluoranylphenyl)-1,3,4-oxadiazole

[18F]PBR06 N-[(2,5-dimethoxyphenyl)methyl]-2-[18F]fluoranyl-N-(2-phenoxyphenyl)acetamide

[18F]PBR111 2-(6-Chloro-2-(4-(3-[18F]fluoropropoxy)phenyl)imidazo[1,2-a]pyridin-3-yl)-N,N-
diethylacetamide

[18F]PI-2620 2-(2-[18F]fluoro-pyridin-4-yl)-8a,9-dihydro-4bH-1,6,9-triaza-fluorene

[18F]RO6958948 2-(6-[18F]fluoro-pyridin-3-yl)-9H-1,6,9-triaza-fluorene

[18F]THK5351 (2S)-1-[18F]fluoranyl-3-[2-[6-(methylamino)pyridin-3-yl]quinolin-6-yl]oxypropan-2-ol

[18F]XTRA 2-{5-[2-[18F]fluoropyridin-4-yl]pyridin-3-yl]-7-methyl-7-azabicyclo[2.2.1]heptane

[18F]ZW-104 5-(6-[18F]fluorohexyn-1-yl)-3-[2(S)-2-azetidinylmethoxy]pyridine

5-[123I]I-A-85380 5-[123I]iodo-3-(2(S)-azetidinylmethoxy)pyridine

[123I]β-CIT 2β-carbomethoxy-3β-(4-[123I]iodophenyl)tropane

[123I]FP-CIT methyl(1R,2S,3S,5S)-8-(3-fluoropropyl)-3-(4-[123I]iodanylphenyl)-8-azabicyclo[3.2.1]octane-
2-carboxylate

[123I]IPT N-(3-[123I]iodopropen-2-yl)-2β-carbomethoxy-3β-(chlorophenyl)tropane

[123I]IBVM 5-[123I]iodo-3-(4-phenyl-piperidin-1-yl)-1,2,3,4-tetrahydro-naphthalen-2-ol

[123I]IBZM (S-)-2-hydroxy-3-[123I]iodo-6-methoxy-N[(1-ethyl-2-pyrrolidinyl)methyl]-benzamide

Table 3 Summary of typical hypometabolism patterns in [18F] FDG PET in different
neurodegenerative diseases

Disease Relative glucose metabolism reduction Disease Relative glucose metabolism reduction

AD PCC, parieto-temporal. Advanced: frontal PD/
DLB

Parieto-temporo-occiptala

PCA Parieto-occipital PSP Mesial and dorsolateral, caudate, thalamus,
upper brain stema

lvPPA Parieto-temporal (left pronounced) CBS Fronto-parietal, striatal (asymmetric)a

bvFTD Frontal, ACC, right anterior insula. Advanced:
temporal and subcortical

MSA Striatum (posterior putamen), cerebelluma

svPPA Anterior temporal, subcallosal, amygdalae,
frontal midline

HD Striatum, insula, posterior cingulate,
prefrontal, occipital cortexb

nfvPPA Left hemisphere, frontotemporal, insula.
Advanced: parieto-temporal

ACC Anterior cingulate cortex, AD Alzheimer’s disease, bvFTD Behavioural variant frontotemporal dementia, CBS
Corticobasal syndrome, DLB Dementia with Lewy-bodies, FDG Fluorodesoxyglucose, HD Huntington’s disease, lvPPA
Logopenic variant primary progressive aphasia, MSA Multisystem atrophy, nfvPPA non-fluent/agrammatic variant primary
progressive aphasia, PCA Posterior cortical atrophy, PCC Posterior cingulate cortex, PD Parkinson’s disease, PET Positron
emission tomography, PSP Progressive supranuclear palsy, svPPA Semantic variant primary progressive aphasia
a(Meyer et al. 2017) b(Tang et al. 2013)
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Fig. 1 Chemical structure of [18F]Fluordesoxyglucose ([18F]FDG)

Fig. 2 Chemical structure of ((R)-1-((3-([11C]-methyl-[11C])pyridin-4-yl)methyl)-4-(3,4,5-trifluorophenyl)pyrrolidin-2-
one) ([11C]UCB-J) and its F18-labeled radioligand derivative (R)-[18F]MNI-116
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Imaging of neuroinflammation

Many neurodegenerative diseases are also accompanied, if not - as some researchers

believe (Krstic and Knuesel 2013) - caused by inflammatory processes which are mainly

mediated by activated microglia. The 18 kDa translocator protein (TSPO) is upregu-

lated in glial cells during inflammation (Albrecht et al. 2016) and, as such, a target for

PET neuroimaging. [11C]PK-11195 (Fig. 3a) is the most-studied TSPO radiotracer.

However, it has a low brain penetrance and a high non-specific binding resulting in a

poor signal-to-noise ratio (Albrecht et al. 2016; Ory et al. 2014). The second-generation

TSPO radiotracers (e.g. [11C]PBR-28, [18F]DPA-714, [18F] FEPPA, [11C]DAA1106,

[18F]PBR06, [18F]PBR111) (Fig. 3a) have several advantages as compared to [11C]PK-

11195, like a higher signal-to-background-ratio. As a potential drawback, however, the

interpretation of their uptake is confounded by the existence of three different binding

affinities (low-affinity, high-affinity, and mixed-affinity binder) (Albrecht et al. 2016;

Herrera-Rivero et al. 2015). Other targets for an indirect measure of neuroinflamma-

tion have been identified, e.g. cyclooxygenase 1, histamine 4 receptors, alpha7-nicotinic

acetylcholine receptors, and others (Ory et al. 2014; Albrecht et al. 2016). Several

PET tracers for these targets have been developed and optimized e.g., [11C]KTP-

ME (Fig. 3b) for imaging cyclooxygenase 1 and [11C]JNJ7777120 (Fig. 3c) for imaging his-

tamine 4 receptors (Ory et al. 2014; Albrecht et al. 2016). However, neuroinflammation is

a highly complex process which is not fully understood and more recently published data

on PET imaging of cyclooxygenase 1 or histamine 4 receptors are missing. Radiotracers

targeting alpha7-nAChRs are described in below in the Cholinergic System Imaging

section.

Imaging of neurotransmission

Dopaminergic system imaging

Dopamine is a neurotransmitter involved in movement, cognition, motivation and addic-

tion. Because the dopaminergic system is crucially involved in the pathophysiology of par-

kinsonism, imaging of the dopaminergic system is of particular interest in diseases such as

Parkinson’s disease or variants of atypical parkinsonism. The PET tracer [18F]FDOPA

(Fig. 4a) is a structural analogue of L-DOPA which is a precursor of dopamine. By measur-

ing the uptake of dopamine precursors, [18F]FDOPA can be used to investigate the integrity

of the dopaminergic system (Leenders et al. 1990). Another approach to detecting the integ-

rity of dopaminergic neurons is imaging of presynaptic membrane DAT using SPECT tracer

tropane derivatives (i.e. [123I]β-CIT, [123I]FP-CIT (DaTSCAN™), [123I]IPT) and PET tracers

[11C]methylphenidate, [11C]Cocaine, or [18F]FE-PE2I (Seibyl 2008) (Fig. 4a).

Most neurodegenerative Parkinsonian syndromes such as idiopathic PD, atypical PD

and DLB are associated, in contrast to drug-induced parkinsonism or essential tremor,

with a loss of presynaptic dopaminergic neurons. Thus, imaging of the integrity of pre-

synaptic dopaminergic function enables to differentiate neurodegenerative Parkinsonian

syndromes from essential tremor or drug-induced parkinsonism (Seibyl 2008). Further,

imaging of the integrity of presynaptic dopaminergic function is useful to differentiate

AD from DLB (Minoshima et al. 2004).

Imaging of postsynaptic D2/3 receptors with selective radioligands such as

[11C]raclopride (for PET) and [123I]IBZM (for SPECT) (Fig. 4b) was used for a

Tiepolt et al. EJNMMI Radiopharmacy and Chemistry            (2019) 4:17 Page 9 of 23



longer time to differentiate PD from atypical (i.e. PSP, MSA, CBD, DLB) parkinsonism.

Recent research, however, demonstrated that [18F]FDG PET is superior to [123I]IBZM

SPECT in this regard. This is as [18F]FDG PET allows not only to discriminate specific

variants of atypical parkinsonism with high accuracy (Hellwig et al. 2012).

a

b c

Fig. 3 Chemical structures of PET radioligands for imaging neuroinflammation – targeting: a TSPO, b
cyclooxygenase 1 and c histamine 4 receptor
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Cholinergic system imaging

Autoradiographic data revealed a significant reduction of different compartments of

cholinergic neurotransmission, like nicotinic acetylcholine receptors (nAChRs) in pa-

tients with AD, PD and DLB (Perry et al. 1995; Martin-Ruiz et al. 2000; Flynn and

Mash 1986; Sihver et al. 1999). These data are in support of the cholinergic hypothesis

a

b

Fig. 4 Chemical structures of radiotracers for imaging the dopaminergic system –targeting: a presynaptic
structures and b postsynaptic receptors
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of geriatric memory dysfunction which assumes that cognitive declines are mainly

caused by a reduction of acetylcholine in the synaptic cleft as a consequence of a reduc-

tion of nicotinic neurons (Bartus et al. 1982). In autoradiographic studies, reductions of

the α4 subunit of the nAChR were detected in the range of 50–65% in moderate-severe

stage AD (Sihver et al. 1999; Martin-Ruiz et al. 2000) and 30–50% in moderate stage

DLB (Martin-Ruiz et al. 2000). In contrast, in-vivo PET/SPECT studies using α4β2

nAChR-targeting radioligands demonstrated reductions to a more variable degree. This

can be at least partly explained by the fact that distinct methods for quantification (e.g.

binding potentials, distribution volumes, distribution volume ratios) of α4β2 nAChR

availability were used and by the fact that patients cohorts differed between studies in

severity of disease ranging from mild to moderate stage of the disease (O'Brien et al.

2007; Sabri et al. 2008; Meyer et al. 2009; Kendziorra et al. 2011; Meyer et al. 2014;

Sultzer et al. 2017; Sabri et al. 2018). Most important and widely used early-generation

α4β2 nAChR PET ligands are 3-pyridylether derivatives such as 2-[18F]A-85380, 6-

[18F]A-85380 and 5-[123I]A-85380 (Fig. 5a). As these radioligands exhibit slow kinetics

resulting in long scanning times, new radioligands with more favourable characteristics

have been developed and tested in preclinical and first clinical trials (Horti et al. 2013).

These next-generation α4β2 nAChR radioligands are derivatives of homoepibatidine

((−)-[18F]Flubatine, (+)-[18F]Flubatine), epibatidine ([18F]AZAN, [18F]XTRA) or 3-pyri-

dylether derivatives ([18F]Nifene, [18F]Nifrolene and [18F]NIDA522131, [18F]Nifzetidine

and [18F]ZW-104) (Horti et al. 2013; Meyer et al. 2014) (Fig. 5a). Results of the first ap-

plications in humans of these next-generation α4β2 nAChR-targeting PET radioligands

such as (−)-[18F]Flubatine, [18F]AZAN and [18F]XTRA are promising (Sabri et al.

2015a, 2015b; Sabri et al. 2018; Wong et al. 2013; Coughlin et al. 2018a, 2018b). Espe-

cially, the faster kinetics with sufficient estimation of radiotracer binding within 90 min

(Sabri et al. 2015a, 2015b; Wong et al. 2013; Coughlin et al. 2018a, 2018b) is an advan-

tage compared to the early-generation α4β2 nAChR PET ligands. Further advantages

are: (a) for (−)-[18F]Flubatine a small metabolization which allows quantification with-

out metabolite correction (Sabri et al. 2015a, 2015b), (b) for [18F]AZAN a greater spe-

cific binding compared to 2-[18F]A-85380 (Wong et al. 2013) and (c) for [18F]XTRA

higher distribution volumes in extrathalamic brain regions compared to the published

data of [18F]AZAN and (−)-[18F]Flubatine, whereby a displacement study needs to clar-

ify whether these higher distribution volumes are due to specific or nonspecific binding

(Coughlin et al. 2018a, 2018b).

In addition to the α4β2 subtype, also α7 nAChRs should play an important role in

the pathophysiologic processes, for instance, in AD (Bao et al. 2017). α7 nAChRs seem

to mediate Aβ-induced tau protein hyperphosphorylation (Wang et al. 2003) and

modulate immunological process in AD (Conejero-Goldberg et al. 2008) and probably,

in other neurodegenerative diseases. First α7 nAChR-targeting PET radioligands i.e.

[11C]CHIBA-1001 and [18F]ASEM (Fig. 5b) have been evaluated in humans (Ishikawa

et al. 2011; Wong et al. 2014; Coughlin et al. 2018a, 2018b) and other promising radi-

oligands e.g. [11C]A-582941 and [11C]A-844606 (Toyohara et al. 2010), [18F]NS10743

(Deuther-Conrad et al. 2011) [11C]NS14492 (Ettrup et al. 2011), [18F]DBT-10 (Hillmer

et al. 2016) have been preclinically examined (Fig. 5b).

Apart from nAChR deficiency, post-mortem data revealed reductions of vesicular

acetylcholine transporter (VChAT) and acetylcholinesterase (AChE) in AD patients
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a

b

c

d

Fig. 5 Chemical structures of radiotracers for imaging the cholinergic system –targeting: a α4β2 nicotinic
acetylcholine receptors (nAChRs), b α7 nAChRs, c vesicular acetylcholine transporter and d acetylcholinesterase
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compared to healthy controls (HCs) and, further, a correlation between neocortical

AChE activity and dementia severity (Bierer et al. 1995). Therefore, ante-mortem exam-

ination of VChAT and AChE activity could be also of interest in AD. A radioligand

targeting VChAT is [123I]IBVM (Fig. 5c) and radioligands targeting AChE are

[11C]MP4A and [11C]PMP (Kuhl et al. 1996; Kuhl et al. 1999; Roy et al. 2016) (Fig. 5d).

Furthermore, [18F]FEOBV, a novel, very promising PET radioligand targeting VChAT

has been developed and successfully applied in patients with AD and PD (Aghourian et

al. 2017; Bohnen et al. 2019). Thus, using abovementioned radioligands, reduced activ-

ities of VChAT and AChE were demonstrated in various neurodegenerative diseases

like AD, PD and DLB (Kuhl et al. 1996; Kuhl et al. 1999; Roy et al. 2016; Aghourian et

al. 2017; Bohnen et al. 2019).

Monoamine system imaging

The vesicular monoamine transporter 2 (VMAT2) is a membrane protein that trans-

ports monoamines (e.g. dopamine or serotonin) into the presynaptic vesicles. [18F]AV-

133 (Fig. 6) is a PET radiotracer targeting VMAT2. In patients with PD, a reduced

[18F]AV-133 uptake was found in the basal ganglia, more pronounced in the putamen

and contralateral to the predominantly affected side at onset (Gao et al. 2016). An ac-

curacy in differentiating PD patients from HCs similar to that of DAT SPECT has been

reported. Furthermore, [18F]AV-133 PET data might better correlate to clinical charac-

teristics than PET/SPECT imaging data of DAT (Hsiao et al. 2014).

Imaging of misfolded proteins

β-Amyloid (Aβ) PET imaging

Aβ plaques are the histopathological hallmark of AD. Moreover, their appearance in

the brain is an early, if not the causal event in AD. The most widely used Aβ-targeting

Fig. 6 Chemical structure of (2R,3R,11bR)-9-(3-[18F]fluoranylpropoxy)-10-methoxy-3-(2-methylpropyl)-2,3,4,6,7,11b-
hexahydro-1H-benzo [a]quinolizin-2-ol ([18F]AV-133)
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PET tracer is [11C]Pittsburgh Compound B (PiB) (Fig. 7). However, the short half-life

hampers the use of this tracer for clinical routine applications. Thus, three 18F-labeled

radiotracers (i.e. florbetapir, florbetaben, flutemetamol) Fig. 7) have been developed and

approved for clinical usage. The phase 3 data of all 3 radiotracers demonstrated high

sensitivity ([18F]florbetapir: 96%, [18F]florbetaben: 98%, [18F]flutemetamol: 88%) and

specificity ([18F]florbetapir: 100%, [18F]florbetaben: 89%, [18F]flutemetamol: > 80%) in

detecting Aβ plaques in-vivo compared to the postmortem data (Clark et al. 2012; Sabri

et al. 2015a, 2015b; Curtis et al. 2015). Other Aβ PET tracers, such as [11C]AZD2184,

[18F]FIBT, and [18F]NAV4694 (Fig. 7), are under clinical examination (Ito et al. 2014;

Grimmer et al. 2018). Results of the first in humans studies revealed a fast kinetics of

[11C]AZD2184 and [18F] FIBT, and a time-window of 40–60min p.i. was determined as

reliable to calculate standard uptake value ratios (SUVRs) (Ito et al. 2014; Grimmer et

al. 2018). The kinetics is therefore comparable to that of [18F]florbetapir and [18F]flor-

betaben where an acquisition start 30 min p.i. ([18F]florbetapir) and 45min p.i. for the

USA/90 min p.i. for Europe ([18F]florbetaben) is recommended (https://eanm.org/publi-

cations/guidelines/Amyloid-Guideline-J_Nucl_Med-2016-Minoshima-1316-22.pdf).

Compared to the three approved 18F-labeled radiotracers, [11C]AZD2184 and

[18F]NAV4694 seem to show lower white matter binding (Ito et al. 2014; Rowe et al.

2013) which principally might translate to a higher sensitivity in detecting subtle amyl-

oid pathology.

Over the last few years, the clinical and research diagnostic criteria especially for AD

(McKhann et al. 2011; Albert et al. 2011; Dubois et al. 2014; McKeith et al. 2017; Jack

et al. 2018) but also for other neurodegenerative diseases have been revised (McKeith

et al. 2017; Berg et al. 2013), resulting in an implementation of biomarkers such as Aβ

PET or [18F]FDG PET. However, the validation process of these biomarkers is still

incomplete (Frisoni et al. 2017). Especially, clinical outcome and cost-effectiveness

studies are still missing (Frisoni et al. 2017). As such studies are the decisive

Fig. 7 Chemical structures of the β-amyloid targeting PET radioligands
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prerequisite for reimbursement within many healthcare systems, these PET imaging

biomarkers are so far not regularly applied in clinical routine.

Tau PET imaging

Physiological tau is a phosphoprotein which stabilizes the microtubules. In the brain,

six isoforms of tau exist with either three repeats (3R) or four repeats (4R) of the mi-

crotubules-binding domain (Buée et al. 2000). Aggregated tau proteins consist of post-

translationally modified tau isoforms, whereby specific phenotypes/neurodegenerative

diseases are associated with specific tau deposits that differ in microscopic appearance

and ultrastructure (Buée et al. 2000; Villemagne et al. 2015). Importantly, the same

clinical tauopathy phenotype can be caused by different misfolded tau proteins and

vice-versa (Villemagne et al. 2015). In general, aggregated tau proteins are mainly lo-

cated intracellularly and therefore a complex target for PET imaging. Current tau

radiotracers share β-sheet binding properties. Since other misfolded proteins have simi-

lar structures, high selectivity for aggregated tau proteins is necessary (Lois et al. 2018).

This is of particular interest, as tau aggregates can be co-localized to Aβ plaques with

much higher concentrations of Aβ plaques compared to tau deposits (Villemagne et al.

2015). First-generation tau PET radiotracers – [18F]AV-1451, [11C]PBB3, [18F]THK5351

(Fig. 8) – showed favourable kinetics and high affinity to the 3R/4R tau isoform com-

bination which is typical in AD (Villemagne et al. 2015; Lois et al. 2018; Villemagne

2018). However, the limitation of the first-generation tau PET radiotracers are a

Fig. 8 Chemical structures of the Tau targeting PET radioligands
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relevant off-target binding as well as ante-mortem vs. post-mortem inconsistencies

(Villemagne et al. 2015; Harada et al. 2018; Lois et al. 2018; Villemagne 2018). Second-

generation selective tau PET radiotracers, such as [18F]RO6958948, [18F]GTP1, [18F]PI-

2620, [18F]MK-6240 (Fig. 8), have been preclinically evaluated and demonstrated high

affinity, selectivity and specificity (Lois et al. 2018). Preliminary clinical data, partially

available as conference abstracts, are promising (Mueller et al. 2017; Barret et al. 2017;

Bohorquez et al. 2016; Wong et al. 2018; Bohorquez et al. 2017; Betthauser et al. 2018).

However, [18F]GTP1 showed off-target binding in the basal ganglia (Bohorquez et al.

2017), while [18F]RO6958948 did so in the substantia nigra (Wong et al. 2018). So far,

for [18F]MK-6240 and [18F]PI-2620 off-target binding was not observed (Betthauser et

al. 2018; Barret et al. 2017). Noteworthy, preliminary data also suggest that [18F]PI-

2620 might not only be able to visualize the 3R/4R tau isoform combination in AD, but

also the 4R isoform in 4R-tauopathies such as PSP/CBD (https://www.alzforum.org/

news/conference-coverage/next-generation-tau-pet-tracers-strut-their-stuff ). Although

the available data on the second-generation tau PET radiotracers are encouraging, the

usefulness of these radiotracers for research and clinical approaches remains to be

demonstrated in larger clinical trials.

Imaging of other misfolded proteins

Following the recent success with bringing amyloid and tau PET tracers into humans,

the desire for radioligands targeting other misfolded proteins like α-synuclein or TDP-

43 is evident. However, developing PET radiotracers that target misfolded proteins be-

yond Aβ is challenging as these proteins (i) are mainly intracellularly localized, (ii)

appear in a much lower concentration than Aβ plaques (Villemagne et al. 2015; Lois et

al. 2018; Harada et al. 2018; Verdurand et al. 2018), and (iii) have β-sheet binding mo-

tives which are rather similar to those of amyloid aggregates. Despite intensive efforts

to develop α-synuclein- and TDP-43-targeting PET radiotracers, until now no suitable

substance has been described (Mathis et al. 2017).

The FET protein family consists of fused in sarcoma (FUS), Ewing sarcoma (EWS) and

TATA-binding protein associated factor 15 (TAF15) and was first discovered as compo-

nents of fusion oncogenes causing specific malignancies (Mackenzie and Neumann 2016).

As DNA/RNA binding proteins, they are predominantly located in the cell nucleus and

are involved in DNA/RNA metabolism as well as in the maintenance of genomic stability

(Mackenzie and Neumann 2016; Svetoni et al. 2016). In approximately 5–10% of all FTLD

cases, the intracellular inclusions are FTLD-Tau- and TDP-43-negative in immunohisto-

chemical examination. But they can be labeled using FUS/EWS/TAF15 antibodies and are

therefore classified as FTLD-FUS or FTLD-FET group (Mackenzie and Neumann 2016).

Similar to α-synuclein and TDP-43, the existing literature does not reveal any reports

regarding FTLD-FET targeting radiotracers. Considering the low prevalence of these dis-

eases (FTLD-TDP is rare, FTLD-FET is even rarer), the search for suitable radiotracers

targeting these proteins is so far less active.

Summary and conclusion
In the last two to three decades, a large number of novel radiotracers for direct and in-

direct imaging neurodegenerative processes and their underlying pathology have been
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developed. Several of them have been approved and are used in clinical routine for

early and differential diagnosis as well as for evaluation of disease progression. Others

are appreciated as valuable research tracers. However, the more pathological compo-

nents of the different neurodegenerative diseases are discovered, the more new and in-

teresting issues occur. Such issues are (i) the classification of neurodegenerative

disorders in clinical routine, (ii) the identification of targets for possible new radio-

tracers, (iii) the identification of novel radiotracer targets, (iv) the accurate monitoring

strategy of such therapy trials. Some of them could be answered by PET studies with

new radiotracers. But as important as the development of new radiotracers seems to

be, at the moment it is equally important to sum up our gathered pieces of knowledge,

combine them and try to get a more comprehensive understanding of the entire

spectrum of neurodegenerative disorders (Fig. 9).
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