Skip to main content

Table 2 Nuclear Data (NUDAT2), production methodologies and irradiation sites of scandium radionuclides

From: Production of scandium radionuclides for theranostic applications: towards standardization of quality requirements

Isotope Decay data Nuclear reaction Cross section
(Max value)
Beam energy (MeV) Enrichment of target material Composition/ chemical form Cost
+++ = expensive
--- = not expensive
Irradiation site / type
Sc-43 T1/2 = 3.89 h
<Eβ+ > = 476 keV (88.1%)
Eγ =372 keV (22.5%)
43Ca(p,n)43Sc 300 mb 6–13 natural abundance 0.135%
Max enrichment 90%
natCaCO3
43CaCO3
++ PSI (S) (Van der Muelen 2015)
44Ca(p,2n)43Sc ~  170 mb 18–27 natural abundance of only 2.09%
Max enrichment 99%
44CaCO3 ++  
46Ti(p,α)43Sc Krajewski et al., 2012 45 mb 11–21 natural abundance of 8.25%
Max enrichment 97%
46TiO2 + PSI (S) University of Alabama at Birmingham (USA)
42Ca(d,n)43Sc 200 mb 2–11 natural abundance of only 0.647%
Max enrichment 96.8%
42Ca
42CaCO3
+++  
natCa(α,n)43Ti (T1/2 = 509 ms)➔43Sc (Koning, 2016; Howard, 1974)
natCa(α,p)43Sc (Synowiecki et al. 2018; Domnanich et al. 2017a)
570 mb (Howard, 1974) 10–19 natural abundance 96.94% (as 40Ca)
no need for enrichment
40Ca (not so easy to handle)
natCaCO3
40CaCO3
++ cyclotron with alpha beam
HIL, Warsaw (PL)
Sc-44 T1/2 = 3.97 h
<Eβ+ > = 632 keV (94.27%)
Eγ = 1157 keV (99.9%)
45Sc(p,2n)44Ti (T1/2 = 60y) (generator 44Ti➔44Sc) 45 mb 17–31 Natural abundance 45Sc +++ LANL + BNL (USA)
natCa(p,n)44Sc 10 mb 7–15 natural abundance 96.94% (as 40Ca)
no need for enrichment
natCa(NO3)2, 4H20 (http://kcvs.ca/isotopesmatter/iupacMaterials/javascript/Interactive%20Periodic%20Table%20of%20the%20Isotopes/HTML5/pdf-elements/scandium.pdf) Local use
Univ. Wisconsin (USA) / cyclotron
Triumf (CA)
44Ca(p,n)44Sc/44mSc 700 mb 7–15 natural abundance of only 2.09%
Max enrichment 99%
44CaCO3 ++ PSI (S) Univ. Alabama Birmingham (USA)
44Ca(p,n)44Sc/44mSc 700 mb 7–15 Max enrichment 99% 44CaO ++ PSI (S) (van der Meulen et al. 2020)
44Ca(d,2 n) 44Sc/44mSc 540 mb 11–25 natural abundance of only 2.09%
Max enrichment 99%
44CaCO3 ++ Arronax (F)
47Ti (p,α)44Sc 70 mb 12–20 natural abundance 7.44%
Max enrichment > 95%
47TiO2 +  
47Sc T1/2 = 3.349 d
<Eβ- > = 162 keV(100%)
Eγ = 159 keV (68.3%)
47Ti(n,p)47Sc ~250mb Fast neutron natural abundance 7.44%
Max enrichment > 95%
47TiO2 + nuclear reactor (Walczak et al. 2015; Szkliniarz et al. 2016; Minegishi et al. 2016; Carzaniga et al. 2019)
46Ca(n,γ)47Ca → 47Sc 0.74 b Thermal neutron natural abundance of only 0.004%
Max enrichment 24.8%
46CaCO3 +++ nuclear reactor:
ILL (F) (Minegishi et al. 2016)
MARIA(Pl) (Carzaniga and Braccini 2019)
ETRR-2 (ET) (Sitarz et al. 2018)
Dhruva (IND) (Filosofov et al. 2010)
Direct reaction on Ti targets 50Ti(p,α)47Sca ~  25 mb 15–30 natural abundance 5.18%
Max enrichment 83%
50TiO2 +++ University of Alabama at Birmingham (USA)
48Ti(p,2p)47Sc ~  30 mb 30–100 natural abundance 73.72%
Max enrichment > 96%
48TiO2 high energy accelerators, BNL and LANL (USA)
50Ti(d,αn)47Sc > 60mb   natural abundance 5.18%
Max enrichment 83%
50TiO2 +++  
49Ti(d,α)47Sc ~ 40 mb   natural abundance 5.41%
max enrichment 92.4
49TiO2 ++  
47Ti(d,2p)47Sc ~  40 mb   natural abundance 7.44%
Max enrichment > 95%
47TiO2 +  
Direct reaction on Ca targets 48Ca(p,2n)47Sc, ~ 800 mb 12–26 natural abundance 0.187%
Max enrichment 97.1%
48CaCO3 ++ (Krajewski et al. 2013; Domnanich et al. 2017b)
44Ca(α,p) 47Sc ~ 120 mb 10–20 natural abundance 2.09%
Max enrichment 99%
44CaO ++ (Domnanich et al. 2017a)
Direct reaction on V targets 51V(p,αp)47Sc ~ 15 mb 30–40 natural abundance natV (van der Meulen et al. 2015)
Electron Linear Accelerator 48Ti(γ,p)47Sc ~  28 mb 16–28 natural abundance 73.72%
Max enrichment > 96%
48TiO2 LANL (USA)
  1. aE Gadiooli et al., Z. Phys A Atoms and Nucl D4060001, 39, 301, 289-300, 1981