Skip to main content

Table 2 Nuclear Data (NUDAT2), production methodologies and irradiation sites of scandium radionuclides

From: Production of scandium radionuclides for theranostic applications: towards standardization of quality requirements

Isotope

Decay data

Nuclear reaction

Cross section

(Max value)

Beam energy (MeV)

Enrichment of target material

Composition/ chemical form

Cost

+++ = expensive

--- = not expensive

Irradiation site / type

Sc-43

T1/2 = 3.89 h

<Eβ+ > = 476 keV (88.1%)

Eγ =372 keV (22.5%)

43Ca(p,n)43Sc

300 mb

6–13

natural abundance 0.135%

Max enrichment 90%

natCaCO3

43CaCO3

++

PSI (S) (Van der Muelen 2015)

44Ca(p,2n)43Sc

~  170 mb

18–27

natural abundance of only 2.09%

Max enrichment 99%

44CaCO3

++

 

46Ti(p,α)43Sc Krajewski et al., 2012

45 mb

11–21

natural abundance of 8.25%

Max enrichment 97%

46TiO2

+

PSI (S) University of Alabama at Birmingham (USA)

42Ca(d,n)43Sc

200 mb

2–11

natural abundance of only 0.647%

Max enrichment 96.8%

42Ca

42CaCO3

+++

 

natCa(α,n)43Ti (T1/2 = 509 ms)➔43Sc (Koning, 2016; Howard, 1974)

natCa(α,p)43Sc (Synowiecki et al. 2018; Domnanich et al. 2017a)

570 mb (Howard, 1974)

10–19

natural abundance 96.94% (as 40Ca)

no need for enrichment

40Ca (not so easy to handle)

natCaCO3

40CaCO3

++

cyclotron with alpha beam

HIL, Warsaw (PL)

Sc-44

T1/2 = 3.97 h

<Eβ+ > = 632 keV (94.27%)

Eγ = 1157 keV (99.9%)

45Sc(p,2n)44Ti (T1/2 = 60y) (generator 44Ti➔44Sc)

45 mb

17–31

Natural abundance

45Sc

+++

LANL + BNL (USA)

natCa(p,n)44Sc

10 mb

7–15

natural abundance 96.94% (as 40Ca)

no need for enrichment

natCa(NO3)2, 4H20

(http://kcvs.ca/isotopesmatter/iupacMaterials/javascript/Interactive%20Periodic%20Table%20of%20the%20Isotopes/HTML5/pdf-elements/scandium.pdf) Local use

Univ. Wisconsin (USA) / cyclotron

Triumf (CA)

44Ca(p,n)44Sc/44mSc

700 mb

7–15

natural abundance of only 2.09%

Max enrichment 99%

44CaCO3

++

PSI (S) Univ. Alabama Birmingham (USA)

44Ca(p,n)44Sc/44mSc

700 mb

7–15

Max enrichment 99%

44CaO

++

PSI (S) (van der Meulen et al. 2020)

44Ca(d,2 n) 44Sc/44mSc

540 mb

11–25

natural abundance of only 2.09%

Max enrichment 99%

44CaCO3

++

Arronax (F)

47Ti (p,α)44Sc

70 mb

12–20

natural abundance 7.44%

Max enrichment > 95%

47TiO2

+

 

47Sc

T1/2 = 3.349 d

<Eβ- > = 162 keV(100%)

Eγ = 159 keV (68.3%)

47Ti(n,p)47Sc

~250mb

Fast neutron

natural abundance 7.44%

Max enrichment > 95%

47TiO2

+

nuclear reactor (Walczak et al. 2015; Szkliniarz et al. 2016; Minegishi et al. 2016; Carzaniga et al. 2019)

46Ca(n,γ)47Ca → 47Sc

0.74 b

Thermal neutron

natural abundance of only 0.004%

Max enrichment 24.8%

46CaCO3

+++

nuclear reactor:

ILL (F) (Minegishi et al. 2016)

MARIA(Pl) (Carzaniga and Braccini 2019)

ETRR-2 (ET) (Sitarz et al. 2018)

Dhruva (IND) (Filosofov et al. 2010)

Direct reaction on Ti targets

50Ti(p,α)47Sca

~  25 mb

15–30

natural abundance 5.18%

Max enrichment 83%

50TiO2

+++

University of Alabama at Birmingham (USA)

48Ti(p,2p)47Sc

~  30 mb

30–100

natural abundance 73.72%

Max enrichment > 96%

48TiO2

high energy accelerators, BNL and LANL (USA)

50Ti(d,αn)47Sc

> 60mb

 

natural abundance 5.18%

Max enrichment 83%

50TiO2

+++

 

49Ti(d,α)47Sc

~ 40 mb

 

natural abundance 5.41%

max enrichment 92.4

49TiO2

++

 

47Ti(d,2p)47Sc

~  40 mb

 

natural abundance 7.44%

Max enrichment > 95%

47TiO2

+

 

Direct reaction on Ca targets

48Ca(p,2n)47Sc,

~ 800 mb

12–26

natural abundance 0.187%

Max enrichment 97.1%

48CaCO3

++

(Krajewski et al. 2013; Domnanich et al. 2017b)

44Ca(α,p) 47Sc

~ 120 mb

10–20

natural abundance 2.09%

Max enrichment 99%

44CaO

++

(Domnanich et al. 2017a)

Direct reaction on V targets

51V(p,αp)47Sc

~ 15 mb

30–40

natural abundance

natV

(van der Meulen et al. 2015)

Electron Linear Accelerator

48Ti(γ,p)47Sc

~  28 mb

16–28

natural abundance 73.72%

Max enrichment > 96%

48TiO2

LANL (USA)

  1. aE Gadiooli et al., Z. Phys A Atoms and Nucl D4060001, 39, 301, 289-300, 1981