Skip to main content


Fig. 1 | EJNMMI Radiopharmacy and Chemistry

Fig. 1

From: The various therapeutic applications of the medical isotope holmium-166: a narrative review

Fig. 1

Diagrams of the production methods of (1) 166Ho and (2) 166Dy. Reactor neutron activated 165Ho will result in 166Ho with a high purity (1). The second method is via neutron activation of 164Dy by two neutrons. Dysprosium-164 has a natural abundance of 28.2% and enriched material will have a purity of over 90%. By capture of two neutrons, 164Dy will be converted into 166Dy which will decay into carrier-free 166Ho as the daughter radionuclide (166Dy/166Ho generator) (data were collected from the International Atomic Energy Agency Database:

Back to article page